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There is a growing strand of literature that employs option prices to infer the econ-

omy’s aggregated risk attitude. Among others, Rosenberg and Engle (2002) and Bliss and

Panigirtzoglou (2004) emphazise the advantages of option prices over consumption data.

Bliss and Panigirtzoglou (2004) infer the representative investor’s risk attitude under the

assumption of constant relative and constant absolute risk aversion and find reasonable pa-

rameters. However, once this parametric restriction is weakened, some puzzling facts about

option implied preferences are reported. For example, Jackwerth (2000) nonparametrically

estimates the risk-neutral distribution from option prices and the data-generating distri-

bution from the historical time series of the underlying. This enables him to calculate the

Arrow-Pratt measure of absolute risk aversion as a function of the economy’s wealth. He

finds the puzzling result of risk aversion smiles over the wealth domain: risk aversion is first

decreasing and then increasing in the economy’s wealth. Even more strikingly, the repre-

sentative agent is risk prone for moderate wealth levels. Aı̈t-Sahalia and Lo (2000) confirm

the U-shaped risk aversion function over the economy’s wealth. However, they do not find

a risk-loving agent.1 Rosenberg and Engle (2002) fit an asymmetric GARCH process to

the underlying’s time series and Chebyshev polynomials to the pricing kernel. Their re-

sults are in line with Jackwerth (2000). Ziegler (2007) tries to explain these U-shaped risk

aversion functions with several approaches including heterogeneous risk aversion among

agents, heterogeneous beliefs, and misestimated beliefs caused by stochastic volatility and

jumps. However, none of these approaches is able to explain risk aversion smiles. Bakshi

and Madan (2008) and Bakshi, Madan, and Panayotov (2009) also consider heterogenous

beliefs to explain U-shaped pricing kernels. Furthermore, Bakshi, Madan, and Panayotov

(2009) provide ample evidence of U-shaped pricing kernels.

Researchers then began to question the assumptions imposed so far, like the S&P 500

being a good proxy for the economy’s wealth or the representative agent deriving state-

1Jackwerth (2000, p. 443) argues that this may be due to the use of overlapping returns in Aı̈t-Sahalia
and Lo (2000).
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independent utility. For example, Brown and Jackwerth (2004) suggest that utility depends

on the volatility level, but conclude that this can not be the only omitted variable. Chabi-

Yo, Garcia, and Renault (2008), among others, assume a state-dependent pricing kernel.

They explain the observed non-monotonicity of the pricing kernel with non-standard pref-

erences like external habit formation with state dependent beliefs.

In this paper, we assume a representative agent economy in which the agent derives

state independent utility over terminal wealth. Furthermore, we assume that the S&P 500

proxies the economy’s wealth. However, we relax the assumption of expected utility theory

(EUT) and thereby a rational agent.2 From a behavioral point of view, option markets are

particularly susceptible to irrationalities. To price out-of-the-money options, traders must

deal with rather small probabilities and extreme outcomes, a situation in which humans

are particularly miscalibrated, as psychologists and behavioral economists have found.

More specifically, extreme outcomes and small probabilities are typically overweighted

(see, for example, Kahneman and Tversky (1979) and Tversky and Kahneman (1992)).

Descriptive theories of decision making accommodate such behavior by employing rank

dependence via probability weighting. Interestingly, recent research from neuroeconomists

shows that probability weighting has its origin in the human brain (Hsu, Krajbich, Zhao,

and Camerer (2009)). fMRI scans suggest that expected reward from gambles is non-linear

in probabilities. Thus, it is no surprise that even professional option trader exhibit this bias

(see Fox, Rogers, and Tversky (1996) and the description of their study below). We wonder,

however, whether probability weighting survives a competitive market environment like the

S&P 500 options market.

This paper is the first attempt to estimate a representive investor’s option-implied risk

attitudes under rank-dependent utility (RDU), one of the most prominent generalizations of

EUT. We assume a one-parameter extension of EUT in most parts of this paper to provide a

2We take the stand that a violation of EUT’s independence axiom is irrational.
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parsimonious model, but also rely on nonparametric estimates for the probability weighting

function. Our results indicate that (1) agents significantly deviate from EUT and that (2)

this deviation is in the same direction as suggested by the psychological literature, i.e.

option traders exhibit probability weighting such that extreme outcomes are overweighted.

This implies an inverse-S shaped probability weighting function. Further, this inverse-S

shape can explain the non-monotonicity of the option-implied pricing kernel.

Chew, Karni, and Safra (1987) and Ryan (2006) provide a thorough analysis of risk

attitudes under RDU. Under mild restrictions on the probability weighting function and the

assumption of a concave and increasing utility function, second-order stochastic dominance

is violated if and only if the probability weighting function has both convex and concave

parts. Thus, the typically observed inverse-S shape of the probability weighting function

implies a violation of second-order stochastic dominance. Accounting for transaction costs,

Constantinides, Jackwerth, and Perrakis (2009) observe exactly this violation of second-

order stochastic dominance in option prices on the S&P 500, one of the world’s most liquid

option markets. However, evidence of direct arbitrage opportunities is negligible as Bakshi

and Panayotov (2008) find. Whereas previous research was primarily concerned about

the lower tail of risk-neutral distributions, Constantinides, Jackwerth, and Perrakis (2009)

moreover document problems with out-of-the-money calls indicating problems in the upper

tail. An inverse-S shaped weighting function addresses these issues by overweighting both

tails of the distribution.

We emphasize that the concept of probability weighting is different from having beliefs

distinct from the objective distribution. Subjects who conduct probability weighting report

the true probabilities when asked, but internally they process the distorted distribution.

Hsu, Krajbich, Zhao, and Camerer (2009) support this view as it is the human brain

that processes probabilities non-linearly in the pattern predicted by an inverse-S shaped

probability weighting function. Note that this behavior may explain the differences in the
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risk-neutral distribution based on options cross sections and based on a time series estimate

(by employing Girsanov’s theorem) as found by Aı̈t-Sahalia, Wang, and Yared (2001)3:

whereas investors may agree on the data-generating distribution, which can be inferred

from past returns, they form a distorted distribution when they process the historical

distribution and price options. These different distributions deliver different risk-neutral

measures when discounted with the stochastic discount factor (or pricing kernel).

Two consequences are noteworthy here. First, the observationally equivalent hypothe-

sis of correctly processing the true data-generating distribution with an abnormal pricing

kernel is rejected by Aı̈t-Sahalia, Wang, and Yared (2001). Second, our hypothesis of an

inverse-S shaped probability weighting function seems to be empirically indistinguishable

from a corresponding belief model. A belief-based model, however, has to argue why ratio-

nal investors have persistently biased beliefs whereas probability weighting (by definition)

does not have to do so. For example, Ziegler’s (2007) most promising approach considers

three investor types, one type with optimistic and two types with either pessimistic or

extremely pessimistic beliefs. In the long run, however, it is hard to justify the fact that

all types of investors do not learn and instead stick to their biased beliefs. Note that an

inverse-S shaped probability weighting function mimics optimistic and pessimistic beliefs

simultaneously by overweighting both tails of the underlying’s distribution.

The point we want to make is not the representative investor’s imprecise knowledge

about the underlying’s distribution although ambiguity may amplify the magnitude of

probability weighting. Liu, Pan, and Wang (2005) consider uncertainty aversion toward

rare events and thereby account for this imprecise knowledge. Gollier (2006) shows that

smooth ambiguity aversion (see Klibanoff, Marinacci, and Mukerji (2005)) can explain the

pricing kernel’s non-monotonicity. Again, we assume for simplicity that the representative

investor knows the underlying’s distribution perfectly. However, unconsciously he does not

3Although accounting for downward jumps with an unreasonably high probability helps to approximate
both risk neutral densities, differences remain.
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process this distribution, but a distorted one. And this distortion is predictable and thus

testable. Following a growing strand of research, we stress the limits of arbitrage (Shleifer

and Vishny (1998), Santa-Clara and Saretto (forthcoming)) and propose a behavioral ex-

planation for observed option prices (see, for example, Stein (1989), Poteshman (2001),

Poteshman and Serbin (2003), Coval and Shumway (2005), Haigh and List (2005), and

Han (2008)).

In our analysis, we will focus exclusively on probability weighting and will not con-

sider further behavioral concepts like reference dependence, loss aversion, and a reflection

effect as, for example, incorporated in Cumulative Prospect Theory (CPT, Tversky and

Kahneman (1992)). We concentrate on RDU theory and ignore additional behavioral fea-

tures because, in liquid markets like the S&P 500 option market, the rational paradigm

is the null hypothesis. Therefore, we would like to incorporate as little deviation from

EUT as possible.4 In a CPT framework, Barberis and Huang (2008) focus on probability

weighting and explicitly state (but do not test) the hypothesis that right-skewed payoff

profiles like out-of-the-money options are too expensive due to probability weighting. In

a portfolio choice context, Driessen and Maenhout (2007) find that only RDU with an

inverse-S shaped probability weighting funtion generates positive portfolio weights on an

at-the-money straddle and on an out-of-the-money put whereas CPT and EUT fail to do

so.

Given the liquidity and high stakes in the competitive S&P 500 option market, it

might be questionable that “small stake theories” (those motivated by lab experiments)

like RDU or CPT predict market prices. However, Coval and Shumway (2005) and Haigh

and List (2005) successfully apply CPT concepts like loss aversion and the reflection effect

to the S&P 500 option market. More related to our hypothesis, Fox, Rogers, and Tversky

4The results by Gurevich, Kliger, and Levy (2009), who estimate CPT parameters from individual
equity options in a discrete state space framework, support our view. For example, their loss aversion
coefficient only slightly deviates from one.
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(1996) ask professional option traders on the floors of the Pacific Stock Exchange and the

Chicago Board Options Exchange to participate in an experiment on option pricing with

an adequate incentive scheme. These traders exhibit non-linear probability weights when

asked for derivatives on Microsoft, IBM, or General Electric shares. Furthermore, Etchart-

Vincent (2004) examines the influence of low and high stakes on probability weighting. She

finds similar inverse-S shaped probability weighting functions in both cases. Snowberg and

Wolfers (2007) analyze a proprietary data set on sports betting markets which enables them

to discriminate EUT-based risk proclivity from probability weighting as an explanation for

the favourite longshot bias. In this presumably less competitive market environment, their

results favor the concept of probability weighting, although Sonnemann, Camerer, Fox,

and Langer (2009) show that other behavioral biases like partition dependence influence

horse race betting markets owing to the specific payoff structure in these markets. The

payoff structure of plain vanilla options makes it unlikely that our results are confounded

by the partition dependence bias.

The remainder of the paper is organized as follows. Section 1 gives a more detailed

introduction to RDU. Section 2 derives the implication of RDU for option prices and risk

aversion functions. Section 3 describes the used data. The results of three different esti-

mation approaches, each with different assumptions, are presented in Section 4. The first

approach employs Pan’s (2002) model accounting for state-dependent distributions via

stochastic volatility and jumps whose intensity is correlated with volatility. The second

one follows Bliss and Panigirtzoglou (2004) and assumes stationary preferences instead of

stationary distributions. Risk preferences are found by maximizing the forecast ability of

the risk-adjusted state price densities amended with risk preferences. The third estima-

tion approach uses the estimation techniques of Aı̈t-Sahalia, Wang, and Yared (2001) and

recovers a nonparametric probability weighting function without parametric assumptions

on the investor’s utility function. Section 5 concludes.
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1 RDU

RDU with its axiomatic foundation was introduced by Quiggin (1981) for decision making

under risk (the probabilities are known) and by Schmeidler (1989) for decision making

under uncertainty (the probabilities are unknown). However, to make our analysis feasible

we (have to) focus on decision making under risk and assume that the representative

investor has perfect knowledge of the relevant odds.

The intuition behind RDU is that risk aversion is not only displayed in diminishing

marginal utility, but also in a probabilistic risk attitude (see Wakker (1994)). For example,

most people prefer gambles like winning $1000 with a probability of 0.001 or winning

nothing to a fixed payment of $1. The famous Allais paradox exploits this type of behavior.

By transforming the cumulative distribution function of the risk at hand, this behavior

can be modeled. Instead of the true cumulative distribution function F , the representative

investor uses the following distorted one:

F̃ (x) = w(F (x)) = w ◦ F (x), (1)

where w : [0, 1]→ [0, 1] is a strictly increasing mapping with the only additional restrictions

that w(0) = 0 and w(1) = 1. Utility for the risk given by the distribution F is then

calculated with the usual additive functional Vu,w(F ) =
∫
u(x)d(w ◦ F )(x).

A lot of effort has been spent on eliciting individual probability weighting functions

w in lab experiments. The vast majority of the literature in this field favors an inverse-S

shape for w which implies overweighting of extreme outcomes. This pattern was found by

parametric estimation (see e.g. Tversky and Kahneman (1992), Camerer and Ho (1994),

Tversky and Fox (1995), Bleichrodt, van Rijn, and Johannesson (1999)) as well as nonpara-

metric estimation (see e.g. Wu and Gonzalez (1996), Gonzalez and Wu (1999), Abdellaoui

(2000), Bleichrodt and Pinto (2000)). Several parametric forms are suggested in the lit-
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erature. In a CPT framework, Stott (2006) conducts an extensive study to analyze the

predictive power of these functional forms. He favors the one introduced by Prelec (1998).

We follow his advice (although we do not employ CPT) and focus on w(p) = e−(−ln(p))
δ
.

Another argument for this parametric form is its strict monotonicity in contrast to the

probability weighting function proposed by Tversky and Kahneman (1992) (see e.g. Rieger

and Wang (2006)). Thus, we use a one-parameter extension of EUT. The typical inverse-S

shaped form is revealed for δ < 1. In addition to this functional form, we also estimate

the probability weighting function in a nonparametric manner as described below. Figure

1 depicts the density functions of a standard normal distribution and the corresponding

distorted distribution based on w(p) = e−(−ln(p))
δ

with δ = 0.6 and δ = 0.8. Evidently,

this probability weighting function overemphasizes both tails, but especially the lower tail

of the distribution. This leads to higher (perceived/evaluated) kurtosis and left-skewness.

This is exactly in line with Aı̈t-Sahalia, Wang, and Yared’s (2001) results. They find the

option-implied risk-neutral distribution to be more left-skewed and to have higher kur-

tosis compared with the time-series-implied risk-neutral distribution. Furthermore, this

particular probability weighting scheme with a utility function exhibiting constant rela-

tive risk aversion (CRRA) can explain the extreme negative skewness of the risk-neutral

distribution as it introduces additional negative skewness and excess kurtosis in the (per-

ceived/evaluted) data-generating distribution (see Bakshi, Kapadia, and Madan (2003)).

Claims that we should have seen more large stock movements in the past to rationalize

option prices (see Bates (2000)) may thus find an answer in RDU preferences.

2 Implications of RDU for option pricing

We now turn to the implications of probability weighting for option pricing. We assume

a representative agent with monotonically increasing utility function u and monotonically
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Figure 1: Density function of the standard normal distribution and its percep-
tion with probability weighting.
The left panel shows the probability weighting function w(p) = e−(−ln(p))

δ
with two different

parameters δ = 0.6 and δ = 0.8 (gray line corresponds to the identity function). The
right panel shows in addition to the density function of the standard normal distribution
two density functions of the distorted normal distribution. Distortion is conducted with
probability weighting according to the weighting function in the left panel.
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increasing probability weighting function w. Chapman and Polkovnichenko (2009) discuss

the conditions for the existence of a representative agent under RDU preferences. Both

u and w are assumed to be smooth (twice continuously differentiable). All wealth in the

economy is proxied by an index with St and ST denoting wealth today and in the future,

respectively. Let fP and fQ denote the density functions of the data-generating process

and the risk-neutral measure with corresponding cumulative distribution functions FP and

FQ, respectively. Under EUT (i.e. linear w), economic theory says that

fQ(ST ) = fP (ST ) · βu
′(ST )

u′(St)
(2)

where β is a normalizing constant. If we estimate fQ from a cross section of option prices

and fP from the historical index prices, then we can infer the representative investor’s risk

preferences measured by the Arrow-Pratt coefficient of absolute risk aversion as

−u
′′(ST )

u′(ST )
=
f ′P (ST )

fP (ST )
−
f ′Q(ST )

fQ(ST )
. (3)

Reasonable estimates for the quantity in equation (3) should be non-increasing in ST and

non-negative, thereby indicating a risk-averse investor whose risk aversion does not increase

with wealth. However, several studies document smiling risk aversion coefficients with sig-

nificant parts being negative (Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), Rosenberg and

Engle (2002)). Clearly, under non-expected utility preferences, the Arrow-Pratt measure is

meaningless and hence may smile. Under RDU (non-linear w), the investor prices options

as if the data-generating process’s distribution function is FP̃ (x) = w(FP (x)). Thus, the

corresponding density is given by

fP̃ (ST ) = w′(FP (ST )) · fP (ST )), (4)
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and our hypothesis is that the option-implied risk-neutral measure is generated under RDU

preferences, i.e. according to

fQ(ST ) = w′
(
FP (ST )

)
· fP (ST ) · βu

′(ST )

u′(St)
. (5)

The same steps that led from equation (2) to equation (3) then yield

f ′P (ST )

fP (ST )
−
f ′Q(ST )

fQ(ST )
=
(
−w

′′(FP (ST ))

w′(FP (ST ))
fP (ST )

)
+ ARAu(ST ), (6)

where ARAu(ST ) denotes the absolute risk aversion function across index levels ST as-

sociated only with the agent’s utility function u. The term −w′′(FP (ST ))
w′(FP (ST ))

fP (ST ) on the

right-hand side of (6) displays the probabilistic risk attitude. The denominator is always

positive due to the strictly increasing weighting function. Hence, observed risk aversion as

a function of the economy’s wealth is decomposed under RDU into a probabilistic counter-

part to the Arrow-Pratt measure of absolute risk aversion and the Arrow-Pratt measure

itself. Under the proclaimed inverse-S shaped form of the probability weighting function,

this term is positive for low wealth levels and steadily decreases until it is negative for

high wealth levels. The intuition here is that concave parts of the probability weighting

function increase the observed risk aversion and convex parts decrease it.

3 Data

In sections 4.3 and 4.4, we use bid and ask prices and the last trade price of European put

and call options on the S&P 500 traded on the Chicago Board Options Exchange (CBOE).

The data include option expiries from January 1997 to December 2007. To estimate risk-

neutral distributions, we calculate closing prices as follows. If the last trade price is between

the last bid and the last ask price, then the last trade price is taken as the closing price. If
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the last trade price is below the last bid price, then the last bid price is taken. Similarly,

the last ask price is taken as the closing price if the last trade price exeeds the last ask

price. If no trade occurred on a specific day, we discard the option from consideration.

We compute the implied volatility based on the Black and Scholes option pricing fomula.

For an option to be included in our estimation procedure, its implied volatility has to be

below 100% and its price has to exceed $0.20. Thus, too deep out-of-the-money options

whose prices are unreliable are excluded. Furthermore, we exclude options that violate

simple arbitrage bounds like max(0, St − Ke−rt,τ τ ) ≤ Ct ≤ St, where K, Ct, St and rt,τ

denote strike price, call price, underlying’s price and riskless interest rate at time t with

time to maturity τ , respectively. We discard option cross sections with less than five

options.

To circumvent the unobservability of expected dividend yields Dt,τ , we employ the

usually most liquidly traded at-the-money put and call options with equal strike price K

to infer the futures price Ft,τ = Ste
(rt,τ−Dt,τ )τ via the put-call parity

Ct(St, K, τ, rt,τ , Dt,τ ) +Ke−rt,τ τ = Pt(St, K, τ, rt,τ , Dt,τ ) + Ft,τe
−rt,τ τ . (7)

With the same arguments given by Bliss and Panigirtzoglou (2004), we use the annualized

three-months’ treasury bills (secondary market) taken from the Federal Reserve Board’s

website to proxy the riskless interest rate.

Section 4.4 moreover uses historical prices of the S&P 500 that is sampled every 5

minutes. We extrat this data from tick data for the period January 1997 to December

2007.
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4 Results

4.1 Overview

To test our theory, we base our results on three different approaches. First, we employ Pan’s

(2002) model. She fits a rich option-pricing model inspired by Bates (2000) that accounts

for stochastic volatility and jumps whose jump intensity depends on the current volatility

level. Her results are particularly useful since she simultaneously uses option cross sections

and time series returns for estimation. Second, we employ the data described in section 3

and follow the ideas in Bliss and Panigirtzoglou (2004). They nonparametrically infer state

price densities from cross sections of option prices. Amending the state price density with

a stochastic discount factor and probability weighting enables us to predict future index

levels. Third, we use the methodology in Aı̈t-Sahalia, Wang, and Yared (2001) and estimate

option-implied and time-series-implied state price densities. These estimates enable us to

infer a nonparametric probability weighting function without parameric assumptions on

the representative investor’s preferences.

4.2 Results for Pan’s (2002) model

For option prices and index prices, Pan (2002) proposes a model with stochastic volatility

and jumps. The jump intensity is correlated with the current volatility level. She estimates

risk premia simultaneously with cross sections of option prices and index returns. She

proposes the following process for the underlying St:

dSt = [rt − qt + ηSVt + λVt(µ− µ∗)]Stdt+
√
VtStdB

1
t + dZt − µStλVtdt, (8)

dVt = κv(v̄ − Vt)dt+ σv
√
Vt
(
ρdB1

t +
√

1− ρ2dB2
t

)
, (9)
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where Vt denotes the instantaneous variance that follows a square-root process with long-

run mean v̄, mean reversion rate κv, and volatility σv. Random innovations are introduced

by two independent Brownian motions B1
t , B

2
t , and a poisson process Zt, whose jump

intensity is λVt and thus perfectly correlated with volatility Vt. The logarithm of the

relative jump size conditional on a jump occurring is normally distributed with mean

µJ = ln(1 + µ)− σ2
J/2 and variance σ2

J . The riskless rate rt and the dividend yield qt both

follow a square-root process with long-run means r̄ and q̄, mean reversion rates κr and κq,

and volatility coefficients σr and σq, respectively.

The risk-neutral dynamics evolve according to

dSt = (rt − qt)Stdt+
√
VtStdB

1
t (Q) + dZQ

t − µ∗StλVtdt, (10)

dVt = [κv(v̄ − Vt) + ηvVt]dt+ σv
√
Vt
(
ρdB1

t (Q) +
√

1− ρ2dB2
t (Q)

)
, (11)

where Vt plays the same role as above, but with mean reversion rate κ∗v = κv−ηv, long-run

mean v̄∗ = κvv̄/κ
∗
v and volatility coefficient σv. B

1
t (Q), B2

t (Q) and ZQ
t are two independent

Brownian motions and the poisson process under the risk-neutral measure Q, respectively.

Again, the jump intensity is λVt. The logarithm of the jump size conditional on a jump

occurring is normally distributed with mean µ∗J = ln(1 + µ∗)− σ2
J/2 and variance σ2

J . Pan

(2002) estimates all parameters in this model including the three risk premia ηSVt, η
vVt,

and λVt(µ − µ∗) for the diffusion, volatility, and jump risk, respectively (see Pan (2002),

Table 3 and Table 6). We extract the state price densities and data-generating densities via

transform inversion for different times to maturity (details can be found in Ziegler (2007)).

Given the data-generating density fP , we can try to match the state price density fQ

by imposing different pricing kernels and probability weighting schemes. Matching is done
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by minimizing the variation distance ∆ between the two densities5

∆(fQ̂, fQ) =
1

2

∫ ∞
0

|fQ̂(ST )− fQ(ST )|dST , (12)

where fQ̂(ST ) = fP (ST ) · w′
(
FP (ST )

)
· β u

′(ST )
u′(St)

is the adjusted data-generating density.

The considered class of utility functions u is restricted to power functions u(ST ) =
S1−γ
T

1−γ .

However, other usually employed utility function like, e.g. the exponential function, do

not alter our results significantly. As noted by Ziegler (2007), the implicit risk attitudes in

the estimated pricing kernel are not in line with any standard assumption on a rational,

risk-averse representative investor, since the implicit absolute risk aversion inferred from

equation (3) is positive for low wealth levels and becomes more and more negative for higher

wealth levels. Therefore, we prefer a standard utility function with a probability weighting

function as an additional degree of freedom. The employed utility function exhibits CRRA.

The probability weighting function is restricted to having the one-parameter Prelec (1998)

form.

Note that our model provides only two degrees of freedom, one in the utility function

and one in the probability weighting function. Pan’s (2002) model, however, allows for

three different risks to be priced. Thus, our preference structure is unlikely to be consistent

with Pan’s (2002) model in general. Given her estimates for the risk premia, however, our

RDU model does a remarkably good job in explaining the time series and risk neutral

distributions simultaneously (see below). This result militates in favor of the reasonable

preference structure we impose.

Figure 2 depicts the results for time to maturity of τ = 1 year. The left panel indicates

a remarkably close fit of the densities when amending the data-generating density with a

5We use a discretized version for the numerical evaluation of the integral and integral limits were 0.1
and 2, since density functions calculated via transform analysis are vitually 0 for values ST outside the
interval [0.1, 2].
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Figure 2: Model implied densities, fitted density, and corresponding absolute
risk aversion smiles in Pan’s (2002) model.
The left panel shows the data-generating density, state price density, and fitted density
for time to maturity τ = 1. Data-generating and state price density are calculated with
Fourier inversion with model parameters estimated by Pan (2002) (see Table 3 and Table 6
in Pan (2002)). By amending the data-generating density with a CRRA pricing kernel (i.e.
u(x) = x1−γ

1−γ ) and a probability weigting of the Prelec (1998) form (i.e. w(p) = e−(−ln(p))
δ
)

such that the variation distance to the state price density is minimized we yield the fitted
density. The fittes parameter values are γ = 3.3691 and δ = 0.7390. Under RDU, δ < 1
and δ > 1 indicate an inverse-S shaped and S shaped probability weighting function,
respectively. The right panel shows the corresponding absulute risk aversion functions
over wealth.
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CRRA pricing kernel and probability weighting of the Prelec (1998) form. Fitted parameter

values are γ = 3.3691 and δ = 0.7390. Thus, we have a considerable overweighting of

tail events as hypothesized by an inverse-S shaped probability weighting function. Indeed,

δ = 0.7390 is only slightly higher than observed in lab experiments where median individual

probability weighting parameters are typically aroung 0.69.

Ziegler (2007) calculates risk aversion functions implied by Pan’s (2002) model estimates

for times to maturity from one year to one month. They exhibit a simlar shape as in Figure

2, i.e. the implicit absolute risk aversion is positive for low wealth levels and becomes more

and more negative for higher wealth levels (see footnote 11 on page 876 in Ziegler (2007)).

From equation (6) it is clear that this pattern is exactly in line with an inverse-S shaped

probability weighting function.

4.3 Predicting index levels with risk-adjusted state price densi-

ties

Assuming CRRA or CARA utility functions, Bliss and Panigirtzoglou (2004) provide an

excellent framework to infer the option-implied risk preferences under EUT. For a given

forecast horizon, they nonparametrically estimate the risk-neutral density from a cross

section of options on the S&P 500 future with time to maturity equal to the forecast

horizon. According to their presumed utility function, they risk adjust the risk-neutral

density fQ by simple manipulation and renormalization of equation (2). Equipped with

this theoretical data-generating density fP , they forecast the future price at the date of

expiry. Moreover, by optimizing over the risk preference parameter, they maximize the

forecast ability, thereby estimating the representative investor’s risk aversion in terms of

constant relative or constant absolute risk aversion. We adopt their ideas and additionally

allow for probability weighting. Before turning to the results, we describe the procedure of
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estimating the risk-neutral density and optimizing the forecast ability of the risk-adjusted

risk-neutral density in more detail.

For each forecast horizon τ (τ = 2 weeks to 6 weeks), we follow Aı̈t-Sahalia and Lo

(1998) and Aı̈t-Sahalia, Wang, and Yared (2001) and estimate the state price density

implicit in option prices as follows. We assume a semiparametric model, namely the Black-

Scholes model with an implied volatility function σ(K/Ft,τ , τ) which depends on the ratio

of the strike price K and the futures price Ft,τ and on the time to maturity τ . The goal is

then to provide a nonparametric estimate σ̂(K/Ft,τ , τ) for this volatility function.

To obtain the risk-neutral density for a fixed time to maturity τ , we determine the

futures price Ft,τ as described in Section 3 and predict implied volatilies σ̂(K/Ft,τ , τ) on a

fine grid of equidistant strike prices K = K1, . . . , Kn. With the help of the Breeden and

Litzenberger (1978) formula

fQ(ST ) = e−rt,τ τ
∂2Ct(St, K, τ, rt,τ , Dt,τ )

∂K2

∣∣∣
K=ST

(13)

we numerically derive the risk-neutral density from call prices Ct(St, K, τ, rt,τ , Dt,τ ).

We obtain the nonparametric estimate σ̂(K/Ft,τ , τ) as follows. For a given time to

maturity τ and expiration date t+ τ , we collect all options on the S&P 500 that have the

same expiration date t + τ and whose time to maturity deviates from τ by at most five

days. We discard in-the-money options and convert put options into call options via the

put-call parity. For all remaining n options we calculate for each option i the Black-Scholes

implied volatity σi. Now, we apply the Nadaraya-Watson kernel estimator and obtain

σ̂(K/Ft,τ , τ) =

∑n
i=1 kK/Ft,τ

(
K/Ft,τ−Ki/Fti,τi

hK/Ft,τ

)
kτ

(
τ−τi
hτ

)
σi∑n

i=1 kK/Ft,τ

(
K/Ft,τ−Ki/Fti,τi

hK/Ft,τ

)
kτ

(
τ−τi
hτ

) (14)
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We use the kernel functions

kK/Ft,τ (x) =
1

2π
exp(−x

2

2
), (15)

kτ (x) =
1

2π
exp(−x

2

2
). (16)

We choose bandwidths hK/Ft,τ and hτ such that we obtain a good fit of actual data and rea-

sonably smooth state price density functions. Visual inspection of fitted implied volatilities

revealed that we rather underestimate implied volatilities in the tails and thereby produce

conservative results in terms of our hypothesis of an inverse-S shaped probability weighting

function.

Once we have the risk-neutral distribution fQ, we can risk adjust it and test the forecast

ability of this risk adjusted density. To do so, we pick settlement values from the CBOE’s

website. For a given forecast horizon τ , we now have a time series of pairs consisting

of an estimated forecast distribution f̂t and a realization, i.e. the settlement value Xt+τ .

Under the null hypothesis, saying that the settlement values Xt+τ are independent and

our estimated density f̂t reasonably approximates the true distribution ft, the inverse

probability transformation of realizations Xt+τ

yt =

Xt+τ∫
−∞

f̂t(ST )dST (17)

is independently and uniformly distributed. Berkowitz (2001) introduced a method to

test uniformity and independence jointly. He backtransforms the values yt and considers

the time series zt = Φ−1(yt), where Φ is the standard normal cumulative distribution

function. The reasoning behind this is that the equivalent null hypotheses, namely that zt

is independently and standard normally distributed, is easier to test than the independence
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and uniformity of yt. Specifically, Berkowitz (2001) proposes to fit an AR(1) process

zt − µ = ρ(zt−1 − µ) + εt (18)

with εt ∼ i.i.d. N (µ, σ2) by maximum likelihood estimation. Let L(µ, σ2, ρ) denote the log-

likelihood function, then the likelihood ratio test statistic LR3 = −2(L(0, 1, 0)−L(µ̂, σ̂, ρ̂))

has a χ2(3) large sample distribution under the null hypothesis of (µ, σ2, ρ) = (0, 1, 0).

Bliss and Panigirtzoglou (2004) conducted a simulation study to compare this likelihood

ratio test with the chi-squared, Kupier, and Kolmogorov-Smirnov tests. They favor the

Berkowitz (2001) procedure described above.

To determine risk preferences, we minimize the test statistic LR3 over risk preferences.

Under RDU, we need to account for diminishing marginal utility and probability weighting

in a parametric form. We make the parametric assumptions that the utility and probability

weighting functions are given by u(x) = x1−γ

1−γ and w(p) = e−(−ln(p))
δ
, respectively.6 Index

prices and hence settlement values Xt+τ are distributed according to the data-generating

density fP and the connection to the risk-neutral density fQ is given by equation (5).

Dividing both sides by the pricing kernel and integrating up to Xt+τ yields

yt =

Xt+τ∫
0

fQ(ST )

β u
′(ST )
u′(St)

dST = w
(
FP (Xt+τ )

)
. (19)

Clearly, to account for probability weighting in maximizing the forecast ability, we have to

apply the normal distribution transformation not to yt, but to w−1(yt). Hence, we fit the

6In an unreported robustness check, we also consider power probability weighting functions w(p) = pδ

with power utility. This results in negative estimates for the relative risk aversion coefficient γ. Therefore,
we focus on Prelec’s (1998) probability weighting function.
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AR(1) process in equation (18) to the time series

zt = Φ−1
(
w−1(yt)

)
. (20)

We minimize the resulting likelihood ratio statistic LR3 over different preference combina-

tions (γ, δ). Thereby, we optimize the forecast ability, or in other words, we come closer

and closer to the data-generating distribution FP .7 The best parameter combination (γ, δ)

then reflects the RDU risk preferences of the representative investor under our parametric

assumptions on the utility and probability weighting function. For comparison reasons, we

also infer the constant relative risk aversion coefficient under EUT, i.e. we fix δ = 1 in this

case.

Table I shows the estimated risk preference under EUT and RDU. First, the estimated

utility function parameters γ are all in a reasonable range of roughly 1 to 4.5. Further, the

values for γ are pretty close under EUT and RDU. Looking at the probability weighting

parameter δ estimated under RDU, we confirm the inverse-S shaped (i.e. δ < 1) probability

weighting function found in the previous section in Pan’s (2002) model. The standard

errors for δ based on 1,000 bootstrapped samples indicate a significant inverse-S shaped

probability weighting function. Given the close-by estimates for γ under EUT and RDU,

we interpret the results as evidence that accounting for an inverse-S shaped probability

weighting function helps to improve the forecast ability significantly. Indeed, the reported

p-values for the difference of both maximized LR3 statistics support this view.

7Our focus here is on the existence of an inverse-S shaped probability weighting function and not on
the forecast ability itself. Clearly, allowing for more freedom in risk adjusting risk-neutral distributions by
a more complex preference structure has to improve the in-sample forecast ability.
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Table I: Estimated risk preferences under EUT and RDU.
γ is the coefficient of constant relative risk aversion for the assumed power utility function.
Under RDU, δ < 1 and δ > 1 indicate an inverse-S shaped and S shaped probability
weighting function, respectively. For δ = 1, both models coincide. Reported parameter
estimates are based on maximizing the forecast ability, i.e. maximizing the LR3 statistic.
Standard errors based on 1,000 bootstrapped samples are reported in parentheses. We
calculate the differences of the maximized LR3 statistics and report p-values under a χ2(1)
distribution as the RDU model has one additional parameter of freedom. N denotes the
number of used cross sections.

forecast horizon EUT RDU Difference in LR3 statistics
γ γ δ p-value

2 weeks (N = 131) 3.129 2.716 0.805 0.001
(2.127) (1.947) (0.047)

3 weeks (N = 132) 4.295 4.073 0.874 0.041
(1.920) (1.808) (0.060)

4 weeks (N = 131) 2.439 2.386 0.876 0.047
(1.559) (1.460) (0.067)

5 weeks (N = 131) 2.425 2.422 0.860 0.029
(1.347) (1.267) (0.059)

6 weeks (N = 131) 1.326 1.239 0.844 0.012
(1.186) (1.142) (0.056)
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4.4 A nonparametric estimate of the probability weighting func-

tion without parametric assumptions on the utility function

Two questions motivate the estimation procedure of this section. First, are our estimates

for the probability weighting function confounded by our specific assumptions on the rep-

resentative investor’s utility function? For example, Post and Levy (2005) apply several

stochastic dominance criteria and analyze the cross section of stock returns. They cannot

discriminate the two hypotheses of either an inverse-S shaped utility function, i.e. one

with risk proclivity in high wealth regions, or a utility function exhibiting risk aversion on

the entire wealth region paired with an inverse-S shaped probability weighting function.

Second, we used specific parametrizations for the probability weighting function employed

in our estimation processes so far. How does this confound our results?

In this section we set out to provide a nonparamtric estimate for the probability weight-

ing function without making parametric assumptions on the representative investor’s utility

function. To do so, we employ the ideas of Aı̈t-Sahalia, Wang, and Yared (2001). In ad-

dition to the state price density estimated from option prices in Section 4.3, we estimate

the state price density from the time series of the underlying by using the very same

semi-parametric model as in Section 4.3, i.e. we assume that the S&P 500 follows the Itô

diffusion

dS
(P )
t

S
(P )
t

= µ(S
(P )
t )dt+ σ(S

(P )
t )dW

(P )
t (21)

with Brownian motion W (P ). The state price density then results from an application of

Girsanov’s Theorem as

dSt
St

= (rt,τ −Dt,τ )dt+ σ(St)dWt. (22)

The crucial point here is that the volatility function σ(St) should be the same as the

option-implied volatility function σ(K/Ft,τ , τ) from Section 4.3. However, according to
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our hypothesis, we believe that only the option-implied state price density is distorted by

probability weighting simply because humans are badly calibrated when dealing with small

probabilities as is necessary when pricing out-of-the-money options. Aı̈t-Sahalia, Wang,

and Yared (2001) indeed prove a significant difference between both volatility functions

and thus between the option-implied and time-series-implied state price density. They find

that the option-implied state price density exhibits more kurtosis and left-skewness. We

argue that an inverse-S shaped probability weighting function may be a key driver for their

result.

By slightly changing our notation from Section 2, we rewrite Equation (5) as

fQoption-implied
(ST ) = w′

(
FP (ST )

)
· fP (ST ) · βu

′(ST )

u′(St)
(23)

and define the time-series-implied state price density function which is not affected by

probability weighting as

fQtime series
(ST ) = fP (ST ) · βu

′(ST )

u′(St)
. (24)

Once we estimated fQoption-implied
and fQtime series

, we calculate the ratio

fQoption-implied
(ST )

fQtime series
(ST )

= w′
(
FP (ST )

)
(25)

and with the knowledge of w(0) = 0, w(1) = 1, and FP (ST ) by estimating the process (21)

we obtain a nonparametric estimate for the probability weighting function w. At a first

glance, the estimation of the mean return µ appears to be the Achilles heel of our results.

A high (low) µ corrsponds to significant (moderate or even negative) risk aversion in the

economy. However, our results are surprisingly robust with respect to a specific choice of

µ. Reported results here use the historical average return in our data set, i.e µ = 0.073.
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However, we have redone the analyses with µ ranging from 0.12 to 0.00. The latter value

µ = 0.00 corresponds to a negative excess return and thus induces risk proclivity in the

economy. Furthermore, we also tested a perfect foresight of the realized µ. All results are

pretty similar and reveal the hypothesized inverse-S shaped probability weighting function.

Unfortunately, nonparametric estimation techniques demand high sample sizes for reli-

able results. Therefore we sample our data similar to Aı̈t-Sahalia, Wang, and Yared (2001).

We consider all expiration dates in March, June, September, and December in our option

data (44 expiration dates). For a given expiration date, we then collect all option prices

with time to maturity less than twelve and more than ten weeks. We extract the state

price density from these prices as described in Section 4.3. Furthermore, we collect S&P

500 prices every five minutes beginning ten weeks prior to the expiration and ending on the

expiration date. This high frequency data is used to derive a nonparametric estimate σ̂(St)

for the time series’ volatility function σ(St). This function is then used to simulate 1,000

paths of the processes (21) and (22). A kernel estimate with a Gaussian kernel function

then provides the time-series-implied state price density function. The bandwidth in the

kernel estimation is set to 1.5 times the bandwidth suggested by Silverman’s (1986) rule of

thumb. Note that this oversmoothing results in conservative estimates for our hypothesis

as it implies fatter tails in the estimate of the time series state price density.

Following Aı̈t-Sahalia, Wang, and Yared (2001) we estimate σ̂2(St) with the consistent

kernel estimator

σ̂2(S) =

∑N−1
i=1 ktime series

(St+τ ·i/N−S
htime series

)
·N ·

(
St+τ(i+1)/N − St+τ ·i/N

)2∑N
i=1 ktime series

(St+τ ·i/N−S
htime series

) . (26)

We use the kernel function ktime series = 1
2π

exp(−x2

2
). The bandwidth htime series is chosen

such that σ̂(St) at the actual index price St equals the at-the-money option-implied volatil-

ity. Note that this choice again mitigates the effect of probability weighting as the time
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series realized volatility is usually lower than the option-implied volatility (see, for example,

Christensen and Prabhala (1998)). Note that Aı̈t-Sahalia, Wang, and Yared (2001) match

the first two moments of the two state price densities and focus only on the third and

fourth moments. We refrain from matching the first two moments as that would distort

our estimate for the aggregate probability weighting function.

Figure 3 shows the average probability weighting function (solid line) for our 44 es-

timates. Additionally, we graph ±0.5 times the empirical pointwise standard deviation

(dashed lines). In line with our hypothesis we see a clear and notable inverse-S shape.

However, the average probability weighting function intersects the identity line (gray) at

higher probabilities than Prelec’s (1998) parametric probability weighting function which

crosses the identity line at 1
e
≈ 0.368.

5 Conclusion

There is ample evidence such as, for example, the Allais paradox that people’s risk attitudes

cannot be fully described by marginal utility. We therefore inferred the option implied risk

preferences under RDU, one of the most prominent extensions of expected utility, which

introduces probabilistic risk attitudes via probability weighting. Specifically, in most cases,

we used a one-parameter extension to EUT to provide a parsimonious preference structure.

Our results document an inverse-S shaped probability weighting function which is in line

with psychological literature.

Many papers successfully fit other non-standard preferences to option prices (see, for

example, Garcia, Luger, and Renault (2003), Liu, Pan, and Wang (2005), Benzoni, Collin-

Dufresne, and Goldstein (2007), and Chabi-Yo, Garcia, and Renault (2008)). We did

not make an attempt to quantitatively distinguish our hypothesis of an inverse-S shaped

probability weighting function from other preferences. In fact, it is likely that this is an
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Figure 3: Average nonparametric estimate of the probability weighting func-
tion without parametric assumptions on the representative investor’s utility
function.
We estimated 44 state price densities from option prices written on the S&P 500 and the
corresponding 44 state price densities from a high frequency time series of the S&P 500
with the methodologies in Aı̈t-Sahalia, Wang, and Yared (2001). Under our hypothesis
of RDU preferences, the ratio of the option-implied and time-series-implied state price
density equals w′

(
FP (ST )

)
, i.e. the first derivative of the probability weighting function w

at the cumulative distribution function FP (ST ) of the data-generating density. The average
probability weighting function (solid line) is calculated with the knowledge of w(0) = 0 and
w(1) = 1. Dashed lines represent the average probability weighting function ±0.5 times the
empirical pointwise standard deviation. The gray line corresponds to the identity function.
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impossible mission as options data might well equally fit to different models, especially if

these models make use of latent variables that are unobservable to the researcher. The

virtue of our hypothesis is twofold. First, our model is extremely parsimonious. Second

and probably more important, we motivate our research by findings on the micro-level, i.e.

lab experiments and research from neuroscientists. Even more suggestive, even professional

option traders exhibit the bias we exploit for our hypothesis (see Fox, Rogers, and Tversky

(1996)). All it needs now to justify our model, is the fact that behavioral biases survive

a competitive market environment like the S&P 500 index options market. And this

assumption appears to be warranted by many studies in the finance literature (Stein (1989),

Shleifer and Vishny (1998), Poteshman (2001), Poteshman and Serbin (2003), Coval and

Shumway (2005), Haigh and List (2005), and Han (2008)). A Bayesian would formulate

this argument as follows. Under a diffuse prior many preference models may explain

observed option prices equally well. However, there are some arguments (see Kahneman

and Tversky (1979), Tversky and Kahneman (1992), Fox, Rogers, and Tversky (1996), Hsu,

Krajbich, Zhao, and Camerer (2009)) that the prior and thereby the posterior should favor

our hypothesis of an inverse-S shaped probability weighting function. However, we take

a frequentistic viewpoint here and conclude that we fail to reject RDU preferences with a

well-behaved utility function and an inverse-S shaped probability weighting function. The

subsequent work of Polkovnichenko and Zhao (2009) confirms our results.

We want to reiterate that our hypothesis relies on the specific nature of out-of-the-

money options, which induce a specific framing of consumption risk. Here, traders have to

deal with low probabilities and extreme outcomes. This situation is especially susceptible

to an inverse-S shaped probability weighting function. Therefore, our hypothesis is silent

about the equity premium puzzle (see Mehra and Prescott (1985)). Indeed, Epstein and Zin

(1990) do not generate sufficient risk premia under RDU to explain the differences between

consumption data and asset prices. A different type of framing and the behavioral concept
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of loss aversion that we did not incorporate might be the more relevant and driving factors

here (see Barberis, Huang, and Santos (2001)). However, our results provide a unifying

way to understand several puzzling facts about option prices.
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