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ABSTRACT

In this study we comprehensively investigate the usefulness of the tail risk measures proposed

in the literature. We evaluate the tail risk measures on the basis of their statistical and economic

validity. Our main conclusion is that the option-implied measure of Bollerslev and Todorov (2011b)

outperforms all others. It performs well for all tests and can predict not only the occurrence but

also the size of future crash events. In addition, the measure is priced in the market: it predicts

returns both in the time-series and in the cross-section. Finally, it also has an impact on real

economic activity.
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I. Introduction

Tail risk can be defined as the risk of ending up in an exceptionally bad state of the world. That

is, one in which a low-probability, high-impact, i.e., high-marginal-utility event occurs. In asset

pricing, such a (left-)tail event is typically associated with high (extreme) negative market returns.

Several anecdotal and empirical observations suggest that investors are concerned with such tail

risk. First, previous studies find that the prices of out-of-the-money put options, instruments that

provide a positive payoff in case of a left tail event, are substantially higher than suggested by

theory (Jackwerth, 2000; Bondarenko, 2014). Thus, investors seem to be willing to pay more than

advocated by standard models to receive crash insurance. Second, The Economist describes “low-

probability, high-impact events” as “a fact of life”.1 Investment practitioners and politicians worry

about “fail[ure] to capture [...] the extreme negative tail” (Alan Greenspan) and see one of their

main objectives to “remove [...] tail risks, and the perception of tail risks” (Olivier Blanchard).2,3

The apparent interest of investors in tail events has sparked a large literature on different tail

risk measures. Such measures come in a variety of fashions from highly parameterized models to

non-parametric approaches. The underlying data vary from option prices, over historical index and

stock returns, to macroeconomic time series. Some measures capture tail risk under the physical,

while others rely on the risk-neutral probability distribution. In short, both investors and politicians

face a difficult choice between different measures with potentially conflicting predictions.

In this paper, we seek to provide some guidance as to how best to measure tail risk. Our

main contribution is a systematic, coherent, and comprehensive evaluation of the tail risk measures

proposed in the literature. Knowing how to measure tail risk is very important for academics,

investment practitioners, and politicians. Decisions based on an inaccurate measure could lead to

vast investment and welfare losses. Furthermore, under the assumption that tail risk is a relevant

risk factor, for academics and investors it is essential to accurately ascribe portfolio performance

1Lead article “The next catastrophe” in the Economist Issue June 25th 2020.
2The first quote is from a speech of Alan Greenspan in 1999: https://www.federalreserve.gov/boarddocs/

speeches/1999/19991014.htm. The second is from an interview with Olivier Blanchard, then chief economist at the
IMF, for The Economist, January 31, 2009.

3In addition, the Chicago Board Options Exchange (CBOE) introduced the VIX Tail Hedge Index (VXTH),
designed to cope with extreme downward movements in the stock index.
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to tail risk exposures. There is thus a great need to identify good tail risk measures.

We analyze a large set of 15 potential tail risk measures. Because they are partially based on

very different concepts, theories, assumptions, and underlying data, the different tail risk measures

likely measure different things. Indeed, we find that the first two principal components (PCs) of the

tail risk measures can only explain 49% of their variation. The correlations between the different

measures are moderate at best. In some instances, we even observe negative correlations. Thus,

the decision to use a specific measure is non-trivial, with potentially important consequences. The

tail risk measures should not be treated as interchangeable.

As a preview, Figure 1 illustrates the vast heterogeneity across the measures. It displays the

average levels of the tail risk measures (each standardized to have a mean of zero and standard

deviation of one) one day before tail events, as well as one day before placebo (non-tail) events.

Some of them have high values (as they should) while others are close to or even below their average

before a tail event. Similarly, some measures on average indicate that a tail event is likely to happen

when, in fact, no such event is subsequently realized.

After having documented significant heterogeneity between the measures, we continue by defin-

ing the desirable criteria a tail risk measure should possess: it should matter both statistically

and economically. That is, on the one hand, the tail risk measure should be able to capture both

the risk of jumps and deliver an indication about the expected magnitude and quadratic variation

caused by tail events. On the other, several studies show that tail risk also matters for investors

(e.g., Rietz, 1988; Barro, 2006; Gourio, 2012; Muir, 2017; Dew-Becker, Giglio, and Kelly, 2019).

Hence, a tail risk measure should be priced in the market. We thus require a tail risk measure to

predict both risk and risk premia.4

We devise three main tests. The first two are statistical in nature with (i) a probit predictive

regression, predicting two-sigma events and (ii) a prediction of the future left tail variation. With

the first test, we examine whether the measures can forecast future tail events, while with the

second test we additionally account for the contribution of tail events to the quadratic variation.

4Of course, a tail risk measure can also be useful if it only predicts either risk or risk premia. In that case, it
could still be used for the tasks it performs well for. Our main goal, however, is to identify measures that can be
used for all applications.
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The final test (iii) is of an economic nature: we examine whether the measures can forecast future

market excess returns.

Our analysis produces a clear winner: The Bollerslev and Todorov (2011b) option-implied left

tail measure (BT11Q) performs best overall. It works well in forecasting the occurrence of and, in

particular, the variation associated with future tail events up to one week ahead. More importantly,

it is able to forecast future market excess returns up to one year ahead. BT11Q is among the best

measures for each of the individual tasks, and it is the only one that consistently performs well

across all tests. On top of that, it is also fairly simple to implement compared to other tail risk

measures. It only requires observed deep out-of-the-money put index option prices.

We document that BT11Q can also predict the magnitude, not only the occurrence, of future

tail events. Furthermore, it performs well in predicting stock returns in the cross-section. It also

predicts real economic activity: BT11Q is a strong negative predictor of the growth of industrial

production during the next month. We perform several further tests that underline the robustness

of our results. Among others, we show that the results are qualitatively similar across subsample

periods, for different multiple regression selection procedures, when predicting the number of jumps,

when varying the tail event thresholds, for left tail variation with and without overnight returns,

and for different bootstrap approaches to determine the statistical significance. For all tests, the

BT11Q measure is amongst the best.

Why does the BT11Q measure perform so well? It appears to combine several desirable prop-

erties for a tail risk measure. On the one hand, it uses forward-looking information from options

markets. Apart from being forward-looking, options markets have also been shown to contain

information about future returns that is not readily found in physical risk measures (Andersen,

Fusari, and Todorov, 2015).5 Most stock-return-based and macroeconomic tail risk measures fail in

particular for the return forecasting exercises. In addition, the BT11Q measure has the advantage

of being entirely non-paramteric, requiring no estimation of structural parameters. Thereby, it

appears to contain substantially less noise than measures which require a parametric optimization

5Indeed, David Einhorn refers to the traditional Value-at-Risk (VaR) approach based on historical return data as
“an airbag that works all the time, except when you have a car accident” (https://www.valuewalk.com/wp-content/
uploads/2014/05/Grants-Conference-04-08-2008.pdf).
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or which rely on high-frequency or options returns. While this noise does not seem to affect the

return predictability exercises that strongly (BT11Q still performs substantially better than all

other measures for these), it seems to have a large impact on the statistical tests. None of the other

option-implied measures performs nearly as good as BT11Q for predicting future tail events and

left tail variation.

The literature contains studies that compare different risk measures in several areas. For ex-

ample, there is a large literature comparing the ability of different approaches to forecast future

volatility (e.g., Andersen and Bollerslev, 1998; Hansen and Lunde, 2005; Jiang and Tian, 2005;

Brownlees and Gallo, 2010). There are also studies concerned with how to best forecast covari-

ances (e.g., Symitsi, Symeonidis, Kourtis, and Markellos, 2018) and beta (e.g., Faff, Hillier, and

Hillier, 2000; Hollstein and Prokopczuk, 2016; Hollstein, Prokopczuk, and Wese Simen, 2019). Sur-

prisingly, however, to the best of our knowledge, to date no such study exists about tail risk. Given

the plethora of different measures that have been proposed over the last decade, we feel there is an

urgent need for such a study. Our main contributions are, thus, to (i) define the criteria a good

tail risk measure should fulfill and (ii) comprehensively analyze the measures proposed in previous

studies based on these criteria. Importantly, we use the same methodology to analyze and evaluate

all measures.

The remainder of the paper is organized as follows: In Section II, we present the tail risk

measures considered. Section III outlines our evaluation methodology and the data employed. In

Section IV, we present the results of our main analysis and in Section V we perform further tests

and analyze the robustness of our results. Section VI concludes.

II. Tail Risk Measures

Our aim is to analyze the most comprehensive set of tail risk measures possible. The measure

selection is based on two main criteria: (i) relevance/importance and (ii) (public) availability of

the underlying data on the measure. Based on these criteria, we have compiled the ensuing list.6

6Further relevant measures include Andersen et al. (2015); Andersen, Fusari, and Todorov (2017), Agarwal,
Ruenzi, and Weigert (2017), Seo and Wachter (2018) and Weller (2018). We refrain from using the measure of

5

Electronic copy available at: https://ssrn.com/abstract=3789005



In the following, we introduce the main tail risk measures analyzed in this study. To keep the

paper focused, in this section we describe only the main mechanisms of the different measures.

The technical details are in Section OA1 of the Online Appendix. We categorize the measures

into four main groups, mainly based on their underlying data: (i) option-implied measures, (ii)

stock-return-based measures, (iii) option-return-based measures, and (iv) tail risk measures based

on macroeconomic data.

In Table I, we summarize the measure acronyms and provide brief descriptions, further infor-

mation about how the different measures can be interpreted, as well as the estimation frequency.

Whenever possible, we define the tail risk measure acronyms in accordance with those in the orig-

inal studies. For cases in which this would lead to names that could not be uniquely identified,

we rely on bibliographic information about the study to generate generic acronyms based on the

author names, years, and the probability measure under which they are estimated. All measures are

estimated such that an investor could have observed these in real time. Thus, whenever estimation

of parameters is necessary, it is based on data available at the time.

A. Option-Implied Measures

BT11Q (Bollerslev and Todorov, 2011b) is a left tail measure under the risk-neutral proba-

bility distribution, which is based on the theoretical framework developed in Bollerslev and Todorov

(2011a). Using close-to-maturity deep out-of-the-money put options with constant moneyness, the

authors approximate the tail behavior. Intuitively, it is based on the idea that the options will not

end up in-the-money at expiration unless a tail event occurs. This results in an expected-shortfall-

like measure. We rely on the approximation of Bollerslev and Todorov (2011b).

BT14Q and BTX15Q (Bollerslev and Todorov, 2014; Bollerslev, Todorov, and Xu, 2015)

are extensions of the BT11Q left tail measure. For BT14Q, the shape of the tail is allowed to be

time-varying. Furthermore, instead of using an approximation, we rely on the fully parameterized

Andersen et al. (2015) because the model is highly parameterized, making the estimation computationally very
intensive. For Andersen et al. (2017) the weekly options are only available for a limited time period starting in
2011, making a meaningful empirical evaluation infeasible. Finally, we do not have access to the data underlying the
measures in Agarwal et al. (2017), Seo and Wachter (2018), and Weller (2018).
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model, pooling the options and re-estimating parameters on a weekly basis. For BT14Q, Bollerslev

and Todorov (2014) only impose a structure on the jump intensity, not on the level shift, smoothing

the shift parameter estimates. BTX15prob (Bollerslev et al., 2015) is defined as the probability

of a daily loss of 10% or more. The BTX15Q and BTX15prob measures are based on the non-

parametric estimation of Lin and Todorov (2019), using the median level and shift parameters

computed from different options.7 Both BTX15Q and BTX15prob are estimated daily.

H MRI (Gormsen and Jensen, 2020) is a measure of higher-moment risk. It is defined as

the first principal component (PC) of the four moments: skewness, kurtosis, hyperskewness, and

hyperkurtosis. The moments are calculated using out-of-the-money put options and the inference

techniques of Breeden and Litzenberger (1978) and Martin (2017). To obtain a constant time to

maturity, Gormsen and Jensen (2020) interpolate between times to maturity.8

RIX (Gao, Lu, and Song, 2019; Gao, Gao, and Song, 2018) is a left tail volatility index. The

measure is constructed as the difference between a downside volatility index that, compared to the

construction of the VIX, overweights deep out-of-the money put prices and a downside VIX.

TLM (Vilkov and Xiao, 2015) is a parameterized expected shortfall measure. To infer the tail

parameters, the authors optimize over the difference between the theoretical (using Extreme Value

Theory, EVT) and observed prices of deep out-of-the-money put options. The resulting density

can be used to calculate the expected shortfall.

B. Stock-Return-Based Measures

BT11P (Bollerslev and Todorov, 2011b) is a left tail measure under the objective probability

measure. Based on intraday high-frequency returns that exceed a certain threshold, the authors

estimate the shape and the level of the tail, while adjusting for the time-of-day factor that accounts

for intraday variation. Finally, Bollerslev and Todorov (2011b) estimate the tail risk factor based

on a time-varying cutoff value.9

7See also the approach used for the website https://tailindex.com/ created by Andersen, Todorov, and Fusari.
8The authors also show that the first PC loads positively on the kurtosis measures and negatively on the skewness

measures. The measure is negatively correlated with volatility. Thus, it tends to be low during volatile periods.
9See Section OA1.B of the Online Appendix for further details.

7

Electronic copy available at: https://ssrn.com/abstract=3789005

https://tailindex.com/


CJI (Christoffersen, Jacobs, and Ornthanalai, 2012) is the jump intensity from a parametric

dynamic volatility model with separate dynamic jumps (DVSDJ). The model is estimated with

daily return data. To obtain the unobservable measures, Christoffersen et al. (2012) use a filtering

technique. We estimate the model using an expanding window and annual reestimation of the

coefficients.10

JumpRisk and JumpRP (Maheu, McCurdy, and Zhao, 2013) are the conditional jump

intensity and the conditional equity premium due to jumps, respectively. Both measures are de-

rived from a parametric Generalized Autoregressive Conditional Heteroskedastic (GARCH)-jump

mixture model. The jump risk premium is calculated as the first derivative of the equity risk pre-

mium with respect to the jump intensity. Since they argue that risk premia in the model behave

oppositely to the current state of volatility and jump risk, we define JumpRP as the inverse of the

corresponding Maheu et al. (2013) measure. Like for the Christoffersen et al. (2012) model, we also

use an expanding window with annual coefficient reestimation.

�Hill (Kelly and Jiang, 2014) is an expected-shortfall-like measure, derived from the cross-

sectional distribution of individual stock returns. The tail threshold is defined as the fifth percentile

of all daily unsystematic returns in the cross-section during the past month. The measure is

computed using the Hill (1975) power law estimator. Unsystematic returns are defined as the

residuals from a regression of the excess returns on the common return factors of Fama and French

(1993).

C. Option-Return-Based Measures

ADBear (Lu and Murray, 2019) is the excess return of a bear spread portfolio of S&P 500

options. The bear spread portfolio is designed to pay $1 if the S&P 500’s excess return is below

a threshold K2. To generate this payoff, they go long a put option with strike price K1 and short

a put option with strike K2, with K1 > K2, and scale by K1 −K2. The resulting portfolio pays

off $0 above K1 and $1 below K2. They set K2 and K1 to be 1.5 and 1 standard deviations below

10The estimated coefficients are then used to calculate the observations for next years jump intensity over the next
year. This procedure ensures that the measure is entirely out-of sample, and thus comparable to the other measures
used in this study.

8

Electronic copy available at: https://ssrn.com/abstract=3789005



zero, respectively, and hold the portfolio for five days.

JUMP (Cremers, Halling, and Weinbaum, 2015) is the return of a vega-neutral and gamma-

positive portfolio created from market-neutral straddles written on the S&P 500. We use the daily

returns resulting from a strategy with daily rebalancing.

D. Macroeconomic Measures

LE (Adrian, Boyarchenko, and Giannone, 2019) is a measure of the left entropy of the expected

gross domestic product (GDP) growth distribution. The authors model the conditional GDP growth

distribution using interpolated quantile regressions with the the National Financial Conditions

Index (NFCI) as the explanatory variable.

III. Data and Methodology

A. Data

Previous studies rely on several different data sources for estimating tail risk. Following the

characterization performed in the previous section, we obtain options as well as stock return data

from various sources. First, we obtain data on S&P 500 option prices as well as the corresponding

Greeks and the risk-free interest rate and dividend yield from OptionMetrics. To clean the options

data, we follow the steps outlined in Carr and Wu (2003, 2009). First, we remove strike prices

that are duplicated per day, retaining the one with higher open interest. Second, the bid prices

are required to be strictly positive and ask prices cannot be lower than bid prices. Some measures

impose a cutoff level for short-maturity options. To be consistent we follow Carr and Wu (2003,

2009) and choose 8 days.

Second, we use the 1-minute prices of the S&P 500 from Thomson Reuters Tick History (TRTH).

We follow the steps advocated by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) to clean

the data. First, we use only data with a time stamp falling during the exchange trading hours, i.e.,

between 9:30 AM and 4:00 PM EST. Second, we remove recording errors in prices. To be more

specific, we filter out prices that differ by more than 10 mean absolute deviations from a rolling
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centered median of 50 observations. Afterwards, we use the nearest previous entry to assign prices

to every 1-minute interval.

Third, we obtain prices of all stocks traded on the New York Stock Exchange (NYSE), the

American Stock Exchange (AMEX), and the National Association of Securities Dealers Automated

Quotations (NASDAQ) that are classified as ordinary common shares (CRSP share codes 10 or 11)

from the Center for Research in Security Prices (CRSP). In addition, we obtain data on the S&P

500 index from the same source. We use the total return on the S&P 500 as the market return,

subtracting the 1-month Treasury Bill rate from Kenneth French to obtain excess returns.11

Finally, we obtain data on the National Financial Conditions Index (NFCI) from the Chicago

Federal Reserve and on the GDP from the Bureau of Economic Analysis (BEA). We collect further

data from Amit Goyal’s webpage (10-year, 3-month, and 1-month Government Bond yields), the

St. Louis FRED (AAA and BAA rated corporate bond yields, industrial production), and Martin

Lettau’s webpage (CAY).12

Our sample period extends from 1996 to 2017.13 Because the aim of this study is, to compare

different tail risk measures, we restrict our attention to this period, also for those measures for

which data would be available for longer time series.

B. Empirical Test Design

What characterizes a good tail risk measure? Obviously, it should be good at predicting future

tail events. To test this property, we devise two statistical tests to gauge the measure’s ability to

forecast future tail events. Moreover, a good tail risk measure should also matter economically.

That is, it should command a risk premium, i.e., be priced by investors (Rietz, 1988; Barro, 2006).

To analyze the economic content, we test the measure’s ability to forecast future aggregate market

returns. In the following sections we describe the corresponding tests in more detail.

11The website is https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
12Amit Goyal’s webpage can be reached as http://www.hec.unil.ch/agoyal/. Martin Lettau’s webpage is https:

//sites.google.com/view/martinlettau/datawebpage.
13The starting date, 1996, is dictated by the fact that both the OptionMetrics and TRTH databases do not start

before that date. The ending date of our sample period is restricted by the data availability when we started this
project.
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B.1. Statistical Tests

The first test we use is a simple forecast analysis of realized tail events. To do so, we use a

binary probit model (Vilkov and Xiao, 2015). We define the threshold based on the VIX. The

binary dummy variable is defined as follows:

Dt+�t =

8
>><

>>:

1 if Rt+�t ≤ −2�t,

0 if otherwise,

(1)

where Rt+�t is the market excess return over the period from t until t+ ∆t, with ∆t measured in

trading days. �t = [V IXt=100
p

∆t=252 is the conditional volatility. V IXt is the level of the VIX

at the end of day t.

To test if the tail risk measure can capture the realization of a 2-sigma tail event, we conduct

the following regression:

Dt+�t = a+ b · TRMt + �t+�t, (2)

where TRMt is the observation of the tail risk measure at time t.

While the probit model captures the occurrence of tail events, it does not account for by how

much the observed returns exceed the specified threshold and how much quadratic variation they

account for. Forecasting the quadratic variation due to left tail events might thus be even more

important for investors. Hence, for a second test, we examine the measures’ abilities to forecast the

future realized left tail variation. This measure yields particularly high values if the magnitude of

(ex-post) tail realizations are very large (or if there are many tail events over the examined period).

Based on Mancini (2001), Bollerslev and Todorov (2011b) propose the following left tail variation
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measure, which is a special case of the truncated variance:14

LTV P
t =

n−1X

i=1

r2
i · 1ri<(−αt;i	0:49)

LTV P
t+�t =

t+�tX

i=t

LTV P
i ,

(3)

where ri denotes an intraday log-return. Following Mancini (2001) and Bollerslev and Todorov

(2011b) we include intraday returns only. In Section V.I, we show that the results are qualitatively

similar when also including overnight returns in the analysis. Ψ is the length, as a fraction of a

day, of each intraday sampling interval. We use market excess returns during n = 390 1-minute

intervals every day to estimate Equation (3). 1ri<(−αt;i	0:49
n ) describes a dummy variable that is 1

if the realized intraday return ri is below −�t,iΨ0.49
n . �t,i is a time-varying threshold adjusted by a

time-of-day (TOD) factor, which accounts for the predictable variation of the intraday returns:

�t,i = 4
p
BVt ∧RVt · TODi ·Ψ0.49. (4)

BVt and RVt are the bi-power and realized variation, respectively. To test if the tail risk measure

can capture the future left tail variation we run the following regression:

LTV P
t+�t = a+ b · TRMt + c · LTV P

t + d · V IXt + �t+�t. (5)

We control both for the lagged left tail variation LTV P
t as well as the current conditional volatility,

measured by V IXt. We do so to see whether the tail risk measures contribute to predicting the

left tail variation beyond its own lag and the VIX.

14The left tail variation measure is based on a decomposition of the realized variation into continuous and jump
variation first proposed by Mancini (2001), which Bollerslev and Todorov (2011b) use to separate the jump variation
further into left and right jump variation.
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B.2. Economic Tests

For our main economic test, we examine the ability of the different tail risk measures to forecast

future market excess returns. If tail risk is a relevant risk-factor in the market, the equity risk

premium should include compensation for tail risk. Thus, if tail risk is large, the equity risk

premium should be higher than during calm times of low tail risk. Hence, a tail risk measure that

is priced in the market should be able to positively forecast future market excess returns.

We use the following regression model to test if the tail risk measures can predict returns:

Rt+�t = a+ b · TRMt + c · Controlst + �t+�t. (6)

Since there are several variables that have been previously documented to predict future stock

returns, we follow Bollerslev, Tauchen, and Zhou (2009) and use several control variables in the

vector Controlst: the variance risk premium (VRP), the log dividend price ratio (log(D/P)), the

default spread (DFSP), the term spread (TMSP), and the stochastically detrended risk-free rate

(RREL).

B.3. Further Methodological Details

Throughout this paper, we report partial rather than “full” R2s. We do so to emphasize the

marginal contribution of each tail risk measure to the explanatory power of a model that may

contain several variables.15 For the probit regressions we calculate the partial R2 via dominance

analysis. We retrieve the average contribution from the dominance analysis following Azen and

Budescu (2003). A predictor is dominant if it contributes more to the prediction than another

one. We report the measure for general dominance, which is the mean of the average additional

contribution on each level. For all other tests we use the partial R2 of Lindeman, Merenda, and Gold

(1980). This measure uses a simple unweighted average of the average contributions of different

models of different sizes. It sums up to the unadjusted R2.

15This is particularly important since most of our analyses also contain control variables. In addition, for the
analyses with multiple tail risk measures we can gauge the contribution of each individual variable.
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For statistical inference, we rely on the wild bootstrap procedure of Rapach, Strauss, and

Zhou (2013), which we describe in more detail in the Appendix. The bootstrap preserves the

contemporaneous correlation structure in the data, controls for the Stambaugh (1999) bias, and

allows or conditional heteroskedasticity in stock returns. To account for autocorrelation, we base

all t-statistics in the original and the bootstrap samples on robust Newey and West (1987) standard

errors with 29 lags (252 lags for annual horizons). For a robustness test, in Section V.J we also

present the results when using a block bootstrap. These are qualitatively similar.

Finally, to reduce the dimensionality in multiple regressions, we follow Bekaert, Harvey, Lund-

blad, and Siegel (2011) and use the general-to-specific PcGets search algorithm. In multiple steps,

this algorithm eliminates insignificant predictor variables. For a robustness test, in Section V.E we

alternatively also present the results for the jackknife procedure (Bekaert et al., 2011). We outline

both methods in Section B of the Appendix.

IV. Main Analysis

A. Summary Statistics

In Table II, we present the summary statistics of the 15 different tail risk measures. We find that

the main characteristics of the measures in our sample match those documented in the literature.

The measures are vastly heterogeneous in their means and standard deviations. To account for that

and to make the results comparable across measures, we standardize all measures to have a mean

of zero and a standard deviation of one for the ensuing tests. Importantly, all but two measures

have positive skewness and all measures but one have substantial excess kurtosis. This observation

is consistent with the measures’ interpretation as capturing the risk of low-probability high-impact

events. Once these events become increasingly likely, a tail risk measure should experience a distinct

peak. This initial intuition already calls into question the usefulness of those tail risk measures that

have negative skewness and/or little to no excess kurtosis, notably �Hill, JumpRisk, and JumpRP .

An important feature to distinguish between the different tail risk measures is their persistence.

The (daily) first-order autocorrelation exceeds 0.99 for BTX15prob, and JumpRisk. It is further
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above 0.90 for BT11Q, BTX15Q, CJI, H MRI, and JumpRP .16 The high autocorrelations imply

that the tail risk measured by these variables is highly persistent and changes little on a day-by-day

basis. On the other hand, there are also two measures with near-zero autocorrelations: BT11P

and JUMP . The low autocorrelations of these two measures would imply that tail risk changes

heavily even over short windows. In part, this is surely caused by large noise in the estimation of

these measures. For JUMP , the construction of the measure as a daily return likely also plays a

role. It appears to be more akin to the first difference in tail risk. The first-order autocorrelations

of the remaining measures all exceed 0.60, indicating that according to most measures tail risk is

quite persistent.17 The question, though, whether low, medium, or high persistence is a desirable

property of a good tail risk measure is an empirical one, which we seek to answer in this section.

Figures 2, 3, and 4 display the time-series of the standardized tail risk measures. For a better

visualization, we further average all daily observations of the tail risk measures during a month.

For most measures, we observe distinct peaks during October 2008, the peak of the financial crisis

right after the Lehman bankruptcy. In particular, all Bollerslev–Todorov measures show this peak.

However, for part of the other measures, we do not observe it. E.g., for �Hill there is rather

a trough than a peak in the time-series at that time. In addition, even among the Bollerslev–

Todorov measures we observe substantially different behavior in the time series, with large peaks

in some measures that seem to be mostly absent in others. This visual inspection of the tail risk

measures suggests that they may not be very strongly correlated among each other and thus contain

quite different information.

Table III displays the correlations of the tail risk measures. Consistent with the time-series

plots, we find that the correlations are indeed much lower than what one would expect from

different measures that are broadly designed to capture essentially the same underlying risk. In

particular, the correlation between measures across different groups is typically low.

Among the option-implied measures, we generally observe the highest correlations. E.g., BT11Q
16The autocorrelation of the �Hill measure in our sample is somewhat lower than that reported by Kelly and

Jiang (2014) (0.75 vs. 0.93). However, this seems to be dependent on the sample period. For their full sample period
(1963–2010), we also obtain an autocorrelation of 0.93.

17In statistical tests, we use bootstrap procedures (described in the Appendix) to ensure that the inference is
robust to this persistence in the explanatory variables.
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and BTX15prob have correlations of 0.87 and 0.79 with TLM , respectively. On the other hand,

H MRI is negatively correlated with all but one of the other option-implied measures.18 Among

the stock-return-based measures, the correlations are generally lower. Interestingly, the correlations

of JumpRP with most option-implied measures are also relatively high. On the other hand, the

correlation of BT11Q with BT11P , which are related measures, is relatively low, with 0.37.19 The

correlations of the option-return-based measures with all the others are rather low. Interestingly,

the only macroeconomic measure in our dataset, although measured at low-frequency and based

on non-financial data, is rather strongly correlated with several of the other measures. E.g., the

correlation between LE and TLM is as high as 0.51.

Table III also presents the correlations of the tail risk measures with the V IX, a simple mea-

sure of the current conditional volatility. Finding that there is some correlation of tail risk with

volatility would be natural. However, the tail risk measures should capture the risk of ending up in

particularly bad states of the world on top of ”normal” day-to-day variation. We find that many

tail risk measures have high correlations with the VIX, e.g., BT11Q (0.89), BTX15prob (0.80),

TLM (0.96), and JumpRP (0.85). These high correlations imply that the tail risk measures may

allow only little additional insights about tail risk beyond what is captured by the VIX. To account

for this, we control for volatility in our empirical tests.

In Table IV we present a principal component (PC) analysis of the tail risk measures. We

calculate the first two PCs among all measures, as well as the respective first two PCs within each

group of measures. Consistent with our previous results in this section, commonality among the

different measures is rather low. The first PC of all measures can only explain 38% of the variation.

Together with the second PC, the share rises to only 49%. Thus, it is difficult to capture the

information contained in the different tail risk measures with just few PCs.

The largest loadings of the first PC are on BT11Q (0.37), TLM (0.40), and JumpRP (0.35).

Thus, these measures appear to be most representative of the common variation in the tail risk

18This is consistent with Gormsen and Jensen (2020), who show hat H MRI tends to be low when volatility is
high.

19�Hill has negative correlations with almost all other measures, apart from H MRI. The latter observation is
consistent with Kelly and Jiang (2014), who show that �Hill loads negatively on skewness and positively on kurtosis,
as does (by construction) H MRI.
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measures. Within the subgroups, the degree of commonality is somewhat larger. The first two

PCs in each subgroup capture at least 59% of the variation in the tail risk measures. The highest

loadings of the first PC among the option-implied measures are on BT11Q (0.44) and TLM (0.48).

Among the stock-return-based measures, the highest PC loadings are on BT11P and JumpRP .

However, being able to capture common variation in the tail risk measures may be a misguided

objective for the selection of a certain measure. We should rather judge the measures based on

their ability to forecast future tail events and capture risk premia.

B. Statistical Tests

We start with the statistical tests. We use three different forecast horizons: (i) one day (Daily),

(ii) one week (Weekly), and (iii) one month (Monthly).20 We do not look at longer horizons for

this analysis because being able to predict realized tail events or variation in the far future appears

unrealistic. Beginning with the probit model, we examine how well the tail risk measures perform in

forecasting future tail events. For each measure and forecast horizon we conduct separate regressions

of the (horizon-specific) dummy variables on the lagged standardized tail risk measures.

First, in Figure A1 of the Online Appendix, we illustrate the timing of realized left tail events.

We separately depict these for the daily, weekly, and monthly horizons. There is some clustering

of realized left tail events during specific crisis periods such as the burst of the dot-com bubble

and the recent financial crisis. Interestingly, we find that not all daily left tail realizations lead

to weekly or monthly left tail observations. Similarly, part of the weekly and monthly tail events

occur without being driven by single or multiple daily tail observations.

The probit regression results are presented in Table V. At the daily level, we find that many

of the tail risk measures have some predictive power for future tail events. The 3 measures that

show the highest R2s and that are statistically significant are, in order, JumpRP , CJI, and

BT11Q. Figures A2 to A4 of the Online Appendix plot the fitted values of the regressions at the

daily frequency along with the realized tail events. These fitted values visualize the time-varying

20Four of the measures are not available on a daily frequency. In the case of these measures, we constantly
extrapolate the last weekly, monthly, or quarterly observation until new information becomes available.
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probabilities of a crash implied by the regression model. While many measures are largely useless for

predicting future left tail events at the daily horizon, it becomes apparent why JumpRP , CJI, and

BT11Q perform best. They often yield their most pronounced peak implied tail event probabilities

around actual tail event realizations. For all measures, periods in which the models suggest high

probabilities of a tail event without one actually occurring do not appear to be all that common.

At the weekly and monthly horizons, the overall performance of the measures becomes much

weaker. None of the three tail risk measures that perform best at the daily horizon yields a

significant positive predictive coefficient. At the weekly horizon, ADBear yields a weakly significant

positive predictive coefficient. At the monthly horizon, JumpRisk and JUMP are able to predict

future tail events. No tail risk measure can predict future left tail events for more than one horizon.

It is important to mention that we require the tail risk measures to be positively related to

future tail events. That is, a high tail risk measure should be associated with a higher probability

of a future tail event. At the monthly horizons, for example, BTX15prob and RIX even yield

slope coefficients that are significantly negative. Such results are surely inconsistent with being a

good tail risk measure.

Beside the individual tail risk measures, we also repeat the probit regressions with the first PC

of all measures and among the different subgroups. We find that the first PC of all measures and

that only using stock-return-based measures significantly predict tail events at the daily frequency.

At the weekly and monthly horizons none of the PCs significantly predicts future tail events.

We further report the results of multiple probit regressions in Table VI. For each horizon,

we select the measures with PcGets. For the daily forecast horizon, the selected measures that

have significant positive coefficients are BT11Q and CJI. For the weekly horizon, only BT14Q is

selected and yields a significant positive coefficient. At the monthly horizon, we cannot detect any

significant positive coefficient.

Next, we move from a left-hand-side variable that only indicates whether there is a tail event or

not to one that also includes information about the magnitude of the tail event and, correspondingly,

the variation it causes. That is, we predict the realized left tail variation (also standardized to have
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a mean of zero and a standard deviation of one). We present the results in Table VII. We study the

same horizons as before (daily, weekly, and monthly) and control for the lagged left tail variation

measure and the V IX.

Starting with the daily frequency, we find that BT11Q turns out to be the best predictor. It

yields the largest slope coefficient and highest partial R2. The slope coefficient of 0.19 indicates

that, all else equal, an increase in BT11Q by one standard deviation increases the left tail variation

by 0.19 standard deviations. The measures BT14Q, BTX15Q, H MRI, JumpRisk, and JUMP

are also significant positive predictors of future left tail variation at the daily frequency. At the

weekly horizon, only BT11Q and JumpRisk yield a significant positive slope coefficient. At the

monthly forecast horizon, BT11P , JUMP , and LE are significant predictors of the future left tail

variation.

Turning to the PCs, we find that only the first PC of all measures has predictive power for

future left tail variation at all horizons. The first PC of the option-return-based measures further

has predictive power at the monthly horizon.

We present the results for the multiple regressions to predict the future left tail variation in

Table VIII. BT11Q turns out as the best predictor of realized left tail variation for the daily horizon.

It has by far the largest slope coefficient and partial R2. At the weekly and monthly horizon, on

the other hand, LE performs performs best.

Thus, overall, the statistical analysis places BT11Q in pole position in the tail risk measure

horse race. It performs well not only for predicting future tail events, but seems to also accurately

capture the future left tail variation over short horizons. For predicting tail events and left tail

variation over longer horizons, other measures perform well, most notably BT14Q and JumpRisk

for tail events and LE for left tail variation.

C. Economic Tests

Finally, we turn to the question of whether tail risk is priced in the market. While part of the

tail risk measures are developed for slightly differing purposes, the majority of studies appear to
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argue that their tail risk measure is priced. Hence, this analysis is equitable. We examine whether

the tail risk measures have predictive power for future market excess returns over various horizons.

For this analysis, we include an annual forecast period in addition to the daily, weekly, and monthly

horizons. We do so for two reasons. First, it is common in the return predictability literature to

also consider longer horizons. Second, long-horizon returns can be also be influenced by tail risk

expectations, while for the statistical tests we would need to observe actual tail event realizations,

which are exceedingly rare at long horizons. In the analysis we are interested in the marginal effect

of the tail risk measures, controlling for several other predictor variables (see the details in Section

III.B.2). We present the results in Table IX. As in Kelly and Jiang (2014), we use annualized

returns in percentage points.

As for the previous analyses, we find that BT11Q again performs very well. It is the only

measure that significantly predicts future market excess returns at the daily, weekly, monthly, and

annual horizons. For each of the horizons, the size of the predictive coefficient and/or the partial R2

are among the top 3. At the daily and weekly horizon, the slope coefficient is even the largest among

all models. For example, at the daily frequency, a one-standard-deviation increase in BT11Q, all

else equal, implies that the annualized market excess return increases by 35.96 percentage points.

The partial R2 is 0.52%.

BTX15prob, TLM , BT11P , and ADBear also have predictive power at the daily horizon,

but their impact on market excess returns is somewhat smaller. Out of these, only BT11P , and

ADBear also have predictive ability at both the weekly and monthly horizons. None of these

variables can predict excess returns one year ahead. On the other hand, the predictive power of

�Hill seems to start only at the annual forecast horizon. With a partial R2 of 9.38%, though, the

measure’s long-term predictive ability is very strong.21

The PCs also perform quite well for predicting future market excess returns. All yield significant

coefficients for the daily horizon. Furthermore, all PCs except that from only option-implied

measures significantly predict future returns at both the weekly and monthly horizons.

21Kelly and Jiang (2014) also report a good performance of �Hill for the 3- and 5-year forecast horizons in their
1963–2010 sample period.

20

Electronic copy available at: https://ssrn.com/abstract=3789005



The results for the multiple return predictions are in Table X. Confirming our previous results,

the PcGets selection procedure selects BT11Q for the daily, monthly, and annual horizons. For

each of these horizons, the measure yields a statistically significant slope coefficient. BT11P is

selected and yields a significant positive slope coefficient at the daily and weekly horizons, making

it suitable for predicting returns over short horizons.

V. Further Analyses and Robustness Tests

A. Tail Event Return Predictability

In the main analysis, we have separately analyzed the statistical and economic value of the tail

risk measures. Next, we perform a joint analysis that also enables us to analyze whether the size

of the tail event is predictable. That is, in the absence of a tail event the tail risk premium should

be larger the larger the tail risk. If the tail risk is realized in a sudden market event, on the other

hand, the exact opposite relationship should hold: the tail event (negative market excess return)

should be larger the higher the previous tail risk.

To analyze these subtleties, we perform an alternative return predictability regression. We use

the dummy variable defined in Equation (1) to isolate periods with tail events from those without

and run the following regression:

Rt+�t = a+ b · TRMt + c ·Dt+�t · TRMt + d ·Dt+�t + e · Controlst + �t+�t. (7)

As before, we expect a good tail risk measure to have a positive b coefficient. The c coefficient on

the interaction of the tail risk measure with the dummy variable, on the other hand, should be very

low. To understand that, remember from Equation (1) that the dummy variable Dt+�t indicates

that we are in a tail state. Thus, the higher the level of the tail risk measure, the lower should be

the future (negative) realized tail-state return. Hence, with this specification we essentially jointly

analyze both the tail risk measures’ risk premia and whether they can predict the size of future tail

events.
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We present the results in Table XI.22 We find that BT11Q also performs well for all horizons in

this more granular analysis. For all forecast horizons except monthly, the b coefficient is significantly

positive and the c coefficient is significant and negative, as it should be. BTX15prob, TLM ,

BT11P , JumpRP , ADBear, and the first PCs also work well.

In Table XII, we present the corresponding multiple regression analysis. Consistent with the

previous results, BT11Q performs well. The measure yields the largest b coefficients at the daily

and monthly horizons. In addition, the c coefficient at the weekly horizons is significantly negative

with the highest partial R2. Other measures’ b and c coefficients are sometimes selected and yield

more significant results, but none of them consistently performs similarly well to BT11Q.

B. Tail Risk and the Cross-Section of Stock Returns

Next, we analyze the impact of the tail risk measures on the cross-section of stock returns. That

is, we conduct a cross-sectional return prediction test to analyze whether stocks with higher tail

risk loadings exhibit larger expected returns.

For this analysis, as Kelly and Jiang (2014), we use the same design as for the predictive

regressions. We first estimate the stocks’ sensitivities to tail risk using a rolling historical window.

We use a window length of one month for all measures available at the daily frequency.23 At the

end of each month, the factor loadings are then estimated by the following predictive regression:

Rit+�t = ai + bi · TRMt + �it, (8)

where Rit+�t denotes the excess return of stock i during the period t until t + ∆t. We focus on a

∆t of 1 day. TRMt is the tail risk measure at time t. We sort the stock based on the estimated bi

and hold the portfolio for one month. Afterwards, we repeat the entire procedure.

Stocks that perform comparably better following high-tail-risk observations are very desirable

for investors. These stocks essentially insure high-marginal-utility states. Thus, investors likely

22Note that, as before, we skip the annual horizon due to lack of sufficient observations for the tail dummy variable.
23For all other frequencies, the rolling window length is defined based on a mechanical rule: we require at least

22 non-overlapping observations. Thus, the window for weekly, monthly, and quarterly variables is six months, two
years, and six years, respectively.
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have a strong demand for those stocks that yield high bis in Equation (8). This increased demand

leads to high prices and, hence, low unconditional average returns. These low average returns are

akin to an insurance premium paid by investors. On the other hand, those stocks that perform

poorly following an observation of high tail risk are undesirable for investors. Hence, they have to

pay a higher return in order to induce investors to hold them.

We present the results for value-weighted portfolios in Table XIII. We find that for BT11Q the

portfolio with the lowest tail risk loadings has an average annualized excess return of 11.01%. Thus,

stocks that perform poorly after a high-tail-risk observation have high returns. On the other hand,

the stocks in the portfolio with the highest tail risk loadings only yield an average annualized excess

return of only 1.53%. Thus, stocks that do well following a high-tail-risk observation perform less

well on average. The difference between the high and low portfolios is −9:48% per year on average.

These results are consistent with the intuition described above. Stocks that do well following the

observation of high tail risk appear to be very desirable for investors and trade at a premium.

While the results for BT11Q are clear and consistent with economic theory, we find that the

vast majority of the other tail risk measures do not yield significant negative high–low portfolio

excess returns. Thus, these measures do not seem to be priced in the cross-section of stock returns.

Exceptions include BTX15prob, TLM , BT11P , and JumpRisk. The cross-sectional tail risk

premia implied by these measures, however, are substantially smaller than that of BT11Q.

In Table A1 of the Online Appendix, we also present the results for equally weighted portfolios.

These are qualitatively similar. Finally, in Table A2 of the Online Appendix, we report the value-

weighted Fama and French (2015) five-factor model alphas instead of raw excess returns. These

are also qualitatively very similar. Thus, the pricing of tail risk appears to be distinct from that of

market risk as well as the other factors in this model.

C. Tail Risk and Real Economic Activity

Facing high tail risk, new investments in the real economy may be delayed and hiring of new

staff paused (Kelly and Jiang, 2014; Gormsen and Jensen, 2020). Thus, if tail risk affects real
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economic activity, it should have an impact on growth in industrial production. Therefore, we also

run predictive regressions of log industrial production growth on the different tail risk measures.

We use the following regression model:

INDt+�t = a+ b · TRM t + �t+�t, (9)

where INDt+�t is the log change in industrial production over the period ∆t. Since industrial

production is only available on a monthly level, we focus on monthly and annual prediction windows.

Therefore, TRM t is the current observation of a tail risk measure, computed as the average of all

observations during month t.

We present the results in Table XIV. Indeed, we find that tail risk has an impact on the growth

in industrial production. For example, at the monthly frequency, a one-standard-deviation increase

in BT11Q decreases the log industrial production growth by 0.24 percentage points. The economic

impact is the largest among all tail risk measures. At the annual frequency, only BT11Q, BT11P ,

and ADBear are significant negative predictors of future industrial production growth.

D. Subsample Analysis

Next, we analyze the robustness of the tail risk measures’ return predictability for two distinct

subsamples. For that purpose, we divide our total sample period in two roughly equal halves: one

ending in 2007, before the Financial Crisis, and the other starting from 2008 until the end of our

sample period. The extreme returns around the peak of the Financial Crisis may be influential and

drive part of the overall predictability results. By running the main economic test separately for

both subsamples, we can therefore assess how stable the predictability is.

The results for the pre-2008 period are in Tables A3 and A4 of the Online Appendix. We

find that BT11Q significantly predicts returns at the daily, weekly, and monthly horizons. Other

measures that perform well include BT11P , ADBear, and JUMP . The model selection algorithm

picks BT11Q for three out of four horizons, for which it also yields significantly positive coefficients.

Thus, our results for the first half of the sample period are consistent with those for the full period.
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Next, we examine the post-2008 period. The corresponding results are in Tables A5 and A6 of

the Online Appendix. We find that BT11Q significantly predicts future market excess returns at

the daily, weekly, and annual horizons. BT11P and ADBear also perform well for the second half

of the sample period. Importantly, the predictive ability of the best measures thus appears to be

rather stable over time.

E. Jackknife Model Selection

In a next step, we analyze the robustness of our main results to the model selection algorithm in

the multiple regression analysis. That is, instead of the PcGets algorithm, we alternatively employ

a jackknife procedure, which we describe in detail in Appendix B.

We present the results in Tables A7, A8, and A9 of the Online Appendix. These are overall

qualitatively similar to those for the PcGets selection algorithm. Although the two approaches

select different measures in some instances, the big picture remains the same. While BT11Q is not

selected for the tail event prediction, it is instead selected for all horizons and yields statistically

significant coefficients for predicting left tail variation. For the return predictability, BT11Q also

turns out to be the best model under the jackknife selection.

F. The Number of Jumps

We also devise an alternative statistical test to evaluate the tail risk measures: the number of

jumps. That is, for each forecast window, we simply count the number of realized jumps (NLJ)

based on the jump test implicit in Equation (3).24 Analogously to the test for the left tail variation,

we then perform univariate regressions of the standardized realized number of negative jumps on

each lagged tail risk measure:

NLJt+�t = a+ b · TRMt + c ·NLJt + d · V IXt + �t+�t,

where all variables are as previously defined.

24Technically, we estimate Equation (3) without multiplying the jump-imposed dummy variable with the squared
returns. Thus, we simply count by summing up ones if there are jumps.
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We present the results in Table A11 of the Online Appendix. BT11Q performs well also for

this test. For all forecast horizons, it yields the highest slope coefficient, which is also statistically

significant in every case.

G. Tail Threshold

In Figures A5 – A7 of the Online Appendix we vary the threshold to define the tail events for the

probit regressions. We display the t-statistics of the b coefficient in Equation (2) for tail thresholds

varying between −0.2 and −2 times the conditional volatility (in steps of 0.1). The results for

common thresholds are qualitatively similar to those of Table V. At the daily forecast horizon,

BT11Q and JumpRP can predict future tail events for all analyzed tail thresholds. At the weekly

and monthly horizons, the performance is typically more dependent on the tail threshold. Some

measures succeed for certain thresholds. On the other hand, part of the measures only perform

well for extreme thresholds; e.g., ADBear at the weekly horizon and JumpRisk and JUMP at

the monthly horizon.

H. The Impact of Future Tail Events on Tail Risk

Additionally, we investigate a specification that essentially reverses the direction of the probit

regression and thereby examines the robustness of Figure 1:

TRMt = a+ b ·Dt+�t + �t+�t.

We display the b coefficient estimates along with their 90% confidence intervals based on robust

Newey and West (1987) standard errors in Figures A8 to A10 of the Online Appendix. A good

measure should have a positive and statistically significant b coefficient. The results are qualitatively

very similar to those of the tail event predictability analysis.
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I. Left Tail Variation With Overnight Returns

We also examine the robustness of our results for the predictability of future realized left tail

variation to also including overnight returns. We present these results in Tables A12 of the Online

Appendix. The results are qualitatively similar to those without including overnight returns. If

anything, they are even more favorable for BT11Q, which performs best for all forecast horizons.

J. Block Bootstrap

Finally, we examine the robustness of our results to the bootstrap method to determine the

statistical inference. For that purpose, we conduct a block-bootstrap. As advised by Lahiri (1999),

we use overlapping blocks. The block length is n1/3 or the number of overlapping observations,

whichever is larger (Hall, Horowitz, and Jing, 1995). The block bootstrap places more emphasis on

the dependence structure in the residuals and is a reality check mainly for the long-term predictive

performance of the tail risk measures.

We present the results for the predictability of left tail variation in Tables A13 and A14 of the

Online Appendix. These are very similar to those for the wild bootstrap. For return predictability,

we present the results in Tables A15 and A16 of the Online Appendix. While the long-term return

predictability is indeed somewhat more modest, overall the results are also very similar for the

return predictability when using a block bootstrap.

VI. Conclusion

We contribute to the literature by conducting a comprehensive empirical analysis of a wide range

of tail risk measures that have been proposed over the recent decade. We detect a large heterogeneity

across different tail risk measures measures. The first two principal components explain only 49%

of their total variation, while some tail risk measures are even negatively correlated. This finding

sends a clear warning to researchers and practitioners not to treat different tail risk measures as

interchangeable.

We find that the option-implied measure of Bollerslev and Todorov (2011b), BT11Q, performs
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best. Further refinements of the Bollerslev and Todorov (2011b) measures by the same authors

appear to be of limited practical value. BT11Q performs well for all tests: It can predict the

occurrence and the magnitude of future tail events as well as the variation caused by them. The

measure also predicts market excess returns at horizons up to one year. In addition, it is priced in

the cross-section of stock returns and affects real economic activity. Other measures only perform

well at most for part of the tasks (while most consistently underperform the winning measure).
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Appendix A. Wild Bootstrap Procedure

For statistical inference, we generally rely on the multivariate wild bootstrap of Rapach et al.

(2013). For example, with the predictive regression in Equation (6), the wild bootstrap procedure

retains the residuals from the main estimation procedure and the residuals of a V AR(1) from all

RHS variables, the parameters are estimated with a reduced-bias VAR estimate by iterating on the

Nicholls and Pope (1988) expression for the analytical bias of the OLS estimates. The coefficients

and residuals of these estimations are used to build pseudo-samples for all RHS variables. In each

pseudo-sample, the LHS returns are constructed under the null of no predictability. The RHS

variables in each pseudo-sample rely on the reduced-bias V AR(1) parameter estimates from the

original residuals, multiplied with standard normal random variables. This procedure preserves the

contemporaneous correlation of the variables and captures conditional heteroskedasticity. Using the

pseudo-samples, one can calculate the t-statistics for the usual regression. With this distribution

of t-statistics, one can obtain the p-values based on the location of the sample t-statistic in this

distribution.

For example, in a return predictability regression, assuming we have only one control variable

(to keep the notation short we only use the V RP ; the extension to multiple control variables is

straightforward), we estimate the following set of regressions:

Rt+�t = a+ b · TRMt + V RPt + �t+�t

TRMt+1 = �d,0 + �d,1TRMt + �d,2V RPt + �d,t+1

V RPt+1 = �b,0 + �b,1V RPt + �b,2TRMt + �b,t+1:

We retain the estimated coefficients: (�̂d,0; �̂d,1; �̂d,2), (�̂b,0; �̂b,1; �̂b,2) as well as the residuals �̂t+�t,
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�̂d,t+1 and �̂b,t+1. Using these estimates and residuals, we build the pseudo-samples under the null:

R∗t+�t = R̄+ �̂t+�twt+1

TRM∗t+1 = �̂d,0 + �̂d,1TRM∗t + �̂d,2V RP ∗t + �̂d,t+1wt+1

V RP ∗t+1 = �̂b,0 + �̂b,1V RP ∗t + �̂b,2TRM∗t + �̂b,t+1wt+1;

where wt+1 is a standard normally distributed variable to produce the pseudo-sample. We repeat

this procedure 1,000 times. The p-value represents the percentage of times the t-statistics of the

pseudo-sample are greater (for positive coefficients) or smaller (for negative coefficients) than the

t-statistic of the original sample. To account for autocorrelation, we base all t-statistics in the

original and the bootstrap samples on robust Newey and West (1987) standard errors with 29 lags

(252 lags for annual horizons).

Appendix B. Multiple Regression Selection Procedures

PcGets Procedure

For the multiple regression analysis, we use the general-to-specific search algorithm of Hendry

(1995) and Hendry and Krolzig (2001). We follow the detailed implementation as described by

Bekaert et al. (2011) in their Appendix Table 4. For convenience, we provide the steps here:

1 Estimate a general model (G1) including all variables.

a If all coefficients are individually significant at a level of 0.025, G1 is the final model

(t-test).

b If an F -test cannot reject the null hypothesis at a level of 0.500 that all coefficients are

zero, or all coefficients but the constant are zero, the null not rejected constitutes the

final model (F -test).

2 Pre-search tests

a Top-down tests: We test an expanding list of coefficients (from smallest to largest t-

statistic). If an F -test does not reject the null hypothesis at a level of 0.500 when
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we add a coefficient, we remove the corresponding explanatory variable. The resulting

reduced model is the new general model G2 (F -test).

b Estimate G2 and repeat (a) with the new model at a level of 0.250 for the null hypothesis

(F -test).

c Bottom-up tests: We test a decreasing list of coefficients (from largest to smallest t-

statistic). If the F -test does not reject at a level of significance of 0.025, remove the

additional variables. The reduced model is the new general model (G3) (F -test).

3 Multiple-path tests

a Estimate G3. If all coefficient estimates are individually significant at a significance level

of 0.025, G3 is the final model (t-test).

b Initiate search paths, re-estimate the model after removing all variables with p-values

above (0.90, 0.70, 0.50, 0.25, 0.10, 0.05, 0.01, 0.001). This leaves 8 paths. Additionally

start a path for each variable that is insignificant at the 0.025 level. Proceed with these

paths in (c).

c As long as insignificant estimates survive at a level of 0.025, drop the least significant

one and re-estimate (t-test). A search path is abandoned if no coefficients are significant.

A path arrives at a terminal model if all coefficient estimates are significant.

4 Encompassing

If all search paths are abandoned, G3 is the final model.

If there is only one terminal model, it is the final model.

If there are multiple terminal models, test each model against the union of all models

with an F -test with a significance level of 0.025 (F -test).

If all models are rejected, the union is the final model.

If only one model is not rejected, it is the final model.

If multiple models are not rejected, they are tested against their union (after removing

any rejected models).

If only one model is not rejected, it is the final model.
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If all models are rejected, the union is the final model.

If no model is rejected, their union is the new general model (G4).

5 Repeat steps 3 and 4 for the new general model (G4)

If there is only one terminal model, it is the final model.

If there are multiple terminal models, they are tested against their union:

If only one model is not rejected, it is the final model.

If all models are rejected and their union equals G4, then G4 is the final model.

If several models are not rejected and their union does not equal G4, their union is

the new general model (G5) and steps 3 and 4 are repeated.

If several models are not rejected and their union equals G4, the model with the

smallest Schwarz criterion is the final model.

Jackknife Procedure

Alternatively, we follow Bekaert et al. (2011) and also consider a jackknife procedure. It entails

the following steps. First, for each tail risk measure (the candidate variable), we perform a regression

with a selection of the other variables and the candidate variable. First, we randomly select

the number of variables to be used. We require at least 30% of all variables to be included in

the selection procedure, which amounts to 9 variables for the return predictability regression.

Second, we randomly select the chosen number of variables from all available variables without

replacement. We then run a regression with all these variables. Third, we eliminate all variables

with t-statistics whose magnitudes are below one (except for the candidate variable). Then, we run

another regression with the remaining variables. In the last step, the coefficient of the candidate

variable is retained. This procedure is repeated one thousand times for each candidate variable,

calculating 90% confidence intervals. All candidate variables whose confidence intervals exclude

zero are retained for the final multiple regression.

32

Electronic copy available at: https://ssrn.com/abstract=3789005



REFERENCES

Adrian, Tobias, Nina Boyarchenko, and Domenico Giannone, 2019, Vulnerable Growth, American
Economic Review 109, 1263–89.

Agarwal, Vikas, Stefan Ruenzi, and Florian Weigert, 2017, Tail Risk in Hedge Funds: A Unique
View from Portfolio Holdings, Journal of Financial Economics 125, 610–636.

Andersen, Torben G., and Tim Bollerslev, 1998, Answering the Skeptics: Yes, Standard Volatility
Models do provide accurate Forecasts, International Economic Review 39, 885–905.

Andersen, Torben G., Nicola Fusari, and Viktor Todorov, 2015, The Risk Premia Embedded in
Index Options, Journal of Financial Economics 117, 558–584.

Andersen, Torben G., Nicola Fusari, and Viktor Todorov, 2017, Short-term Market Risks Implied
by Weekly Options, Journal of Finance 72, 1335–1386.

Azen, Razia, and David V. Budescu, 2003, The Dominance Analysis Approach for Comparing
Predictors in Multiple Regression, Psychological Methods 8, 129–148.

Bakshi, Gurdip, Nikunj Kapadia, and Dilip Madan, 2003, Stock Return Characteristics, Skew
Laws, and the Differential Pricing of Individual Equity Options, Review of Financial Studies 16,
101–143.

Barndorff-Nielsen, Ole E., Peter R. Hansen, Asger Lunde, and Neil Shephard, 2009, Realized
Kernels in Practice: Trades and Quotes, Econometrics Journal 12, 1–32.

Barndorff-Nielsen, Ole E., and Neil Shephard, 2004, Power and Bipower Variation with Stochastic
Volatility and Jumps, Journal of Financial Econometrics 2, 1–37.

Barndorff-Nielsen, Ole E., and Neil Shephard, 2006, Econometrics of Testing for Jumps in Financial
Economics using Bipower Variation, Journal of Financial Econometrics 4, 1–30.

Barro, Robert J., 2006, Rare Disasters and Asset Markets in the Twentieth Century, Quarterly
Journal of Economics 121, 823–866.

Bekaert, Geert, Campbell R. Harvey, Christian T. Lundblad, and Stephan Siegel, 2011, What
Segments Equity Markets?, Review of Financial Studies 24, 3841–3890.

Black, Fischer, and Myron Scholes, 1973, The Valuation of Options and Corporate Liabilities,
Journal of Political Economy 81, 637–654.

Bollerslev, Tim, George Tauchen, and Hao Zhou, 2009, Expected Stock Returns and Variance Risk
Premia, Review of Financial Studies 22, 4463–4492.

Bollerslev, Tim, and Viktor Todorov, 2011a, Estimation of Jump Tails, Econometrica 79, 1727–
1783.

Bollerslev, Tim, and Viktor Todorov, 2011b, Tails, Fears, and Risk Premia, Journal of Finance 66,
2165–2211.

Bollerslev, Tim, and Viktor Todorov, 2014, Time-varying Jump Tails, Journal of Econometrics
183, 168–180.

33

Electronic copy available at: https://ssrn.com/abstract=3789005



Bollerslev, Tim, Viktor Todorov, and Lai Xu, 2015, Tail Risk Premia and Return Predictability,
Journal of Financial Economics 118, 113–134.

Bondarenko, Oleg, 2014, Why are Put Options so Expensive?, Quarterly Journal of Finance 4,
1450015.

Brave, Scott, and R Andrew Butters, 2012, Diagnosing the Financial System: Financial Conditions
and Financial Stress, International Journal of Central Banking 8, 191–239.

Breeden, Douglas T., and Robert H. Litzenberger, 1978, Prices of State-Contingent Claims Implicit
in Option Prices, Journal of Business 51, 621–651.

Brownlees, Christian T., and Giampiero M. Gallo, 2010, Comparison of Volatility Measures: A
Risk Management Perspective, Journal of Financial Econometrics 8, 29–56.

Carr, Peter, and Liuren Wu, 2003, What Type of Process Underlies Options? A Simple Robust
Test, Journal of Finance 58, 2581–2610.

Carr, Peter, and Liuren Wu, 2009, Stock Options and Credit Default Swaps: A Joint Framework
for Valuation and Estimation, Journal of Financial Econometrics 8, 409–449.

Christoffersen, Peter, Kris Jacobs, and Chayawat Ornthanalai, 2012, Dynamic Jump Intensities and
Risk Premiums: Evidence from S&P 500 Returns and Options, Journal of Financial Economics
106, 447–472.

Cremers, Martijn, Michael Halling, and David Weinbaum, 2015, Aggregate Jump and Volatility
Risk in the Cross-section of Stock Returns, Journal of Finance 70, 577–614.

Dew-Becker, Ian, Stefano Giglio, and Bryan Kelly, 2019, Hedging macroeconomic and financial
uncertainty and volatility, Yale ICF Working Paper .

Faff, Robert W., David Hillier, and Joseph Hillier, 2000, Time Varying Beta Risk: An Analysis of
Alternative Modelling Techniques, Journal of Business Finance & Accounting 27, 523–554.

Fama, Eugene F., and Kenneth R. French, 1993, Common Risk Factors in the Returns on Stocks
and Bonds, Journal of Financial Economics 33, 3–56.

Fama, Eugene F., and Kenneth R. French, 2015, A Five-Factor Asset Pricing Model, Journal of
�nancial economics 116, 1–22.

Gao, George P., Pengjie Gao, and Zhaogang Song, 2018, Do Hedge Funds exploit rare Disaster
Concerns?, Review of Financial Studies 31, 2650–2692.

Gao, George P., Xiaomeng Lu, and Zhaogang Song, 2019, Tail Risk Concerns Everywhere, Man-
agement Science 65, 3111–3130.

Gormsen, Niels Joachim, and Christian Skov Jensen, 2020, Higher-moment risk, University of
Chicago Working Paper .

Gourio, Francois, 2012, Disaster risk and business cycles, American Economic Review 102, 2734–66.

Hall, Peter, Joel L. Horowitz, and Bing-Yi Jing, 1995, On Blocking Rules for the Bootstrap with
Dependent Data, Biometrika 82, 561–574.

34

Electronic copy available at: https://ssrn.com/abstract=3789005



Hansen, Peter R., and Asger Lunde, 2005, A Forecast Comparison of Volatility Models: Does
Anything Beat a GARCH (1, 1)?, Journal of Applied Econometrics 20, 873–889.

Hendry, David F, 1995, Dynamic Econometrics (Oxford: Oxford University Press).

Hendry, David F, and Hans-Martin Krolzig, 2001, Automatic econometric model selection using
PcGets (London: Timberlake Consultants).

Hill, Bruce M, 1975, A simple general approach to Inference about the Tail of a Distribution,
Annals of Statistics 1163–1174.

Hollstein, Fabian, and Marcel Prokopczuk, 2016, Estimating Beta, Journal of Financial and Quan-
titative Analysis 51, 1437–1466.

Hollstein, Fabian, Marcel Prokopczuk, and Chardin Wese Simen, 2019, Estimating Beta: Forecast
Adjustments and the Impact of Stock Characteristics for a Broad Cross-Section, Journal of
Financial Markets 44, 91–118.

Jackwerth, Jens Carsten, 2000, Recovering Risk Aversion from Option Prices and Realized Returns,
Review of Financial Studies 13, 433–451.

Jiang, George J., and Yisong S. Tian, 2005, The Model-Free Implied Volatility and its Information
Content, Review of Financial Studies 18, 1305–1342.

Kelly, Bryan, and Hao Jiang, 2014, Tail Risk and Asset Prices, Review of Financial Studies 27,
2841–2871.

Lahiri, Soumendra N., 1999, Theoretical Comparisons of Block Bootstrap Methods, Annals of
Statistics 386–404.

Lin, Huidi, and Viktor Todorov, 2019, Aggregate Asymmetry in Idiosyncratic Jump Risk, Working
Paper .

Lindeman, Richard H., PF. Merenda, and Ruth Z. Gold, 1980, Introduction to Bivariate and
Multivariate Analysis, New York: Scott, Foresman and Co .

Lu, Zhongjin, and Scott Murray, 2019, Bear Beta, Journal of Financial Economics 131, 736–760.

Maheu, John M., Thomas H. McCurdy, and Xiaofei Zhao, 2013, Do Jumps Contribute to the
Dynamics of the Equity Premium?, Journal of Financial Economics 110, 457–477.

Mancini, Cecilia, 2001, Disentangling the Jumps of the Diffusion in a geometric jumping Brownian
Motion, Giornale dell’Istituto Italiano degli Attuari 64, 44.

Martin, Ian, 2017, What is the Expected Return on the Market?, Quarterly Journal of Economics
132, 367–433.

Muir, Tyler, 2017, Financial crises and risk premia, Quarterly Journal of Economics 132, 765–809.

Newey, Whitney K., and Kenneth D. West, 1987, A Simple, Positive Semi-Definite, Heteroskedas-
ticity and Autocorrelation Consistent Covariance Matrix, Econometrica 53, 1047–1070.

Nicholls, Desmond F., and Alun L. Pope, 1988, Bias in the Estimation of Multivariate Autoregres-
sions, Australian Journal of Statistics 30, 296–309.

35

Electronic copy available at: https://ssrn.com/abstract=3789005



Rapach, David E., Jack K. Strauss, and Guofu Zhou, 2013, International Stock Return Predictabil-
ity: What is the Role of the United States?, Journal of Finance 68, 1633–1662.

Rietz, Thomas A., 1988, The equity risk premium a solution, Journal of Monetary Economics 22,
117 – 131.

Seo, Sang Byung, and Jessica A. Wachter, 2018, Option Prices in a Model with Stochastic Disaster
Risk, Management Science 65, 3470–3469.

Stambaugh, Robert F., 1999, Predictive Regressions, Journal of Financial Economics 54, 375–421.

Symitsi, Efthymia, Lazaros Symeonidis, Apostolos Kourtis, and Raphael Markellos, 2018, Covari-
ance forecasting in equity markets, Journal of Banking & Finance 96, 153–168.

Vilkov, Grigory, and Yan Xiao, 2015, Option-implied Information and Predictability of Extreme
Returns, SAFE Working Paper .

Weller, Brian, 2018, Measuring Tail Risks at High Frequency, Review of Financial Studies 32,
3571–3616.

36

Electronic copy available at: https://ssrn.com/abstract=3789005



Group A Group B Group C Group D

B
T

11
Q

B
T

14
Q

B
T

X
15

pr
ob

B
T

X
15

Q

H
_M

R
I

R
IX

T
LM

B
T

11
P

C
JI

Ju
m

pR
is

k

Ju
m

pR
P

l H
ill

A
D

B
ea

r

JU
M

P LE

-0.2

0.0

0.2

0.4

Le
ve

l 1
 D

ay
 P

rio
r 

to
 a

 T
ai

l E
ve

nt

B
T

11
Q

B
T

14
Q

B
T

X
15

pr
ob

B
T

X
15

Q

H
_M

R
I

R
IX

T
LM

B
T

11
P

C
JI

Ju
m

pR
is

k

Ju
m

pR
P

l H
ill

A
D

B
ea

r

JU
M

P LE

-0.15

-0.10

-0.05

0.00

0.05

0.10

Le
ve

l 1
 D

ay
 P

rio
r 

to
 a

 N
on

-T
ai

l E
ve

nt
Group A Group B Group C Group D

B
T

11
Q

B
T

14
Q

B
T

X
15

pr
ob

B
T

X
15

Q

H
_M

R
I

R
IX

T
LM

B
T

11
P

C
JI

Ju
m

pR
is

k

Ju
m

pR
P

l H
ill

A
D

B
ea

r

JU
M

P LE

-0.2

0.0

0.2

0.4

Le
ve

l 1
 D

ay
 P

rio
r 

to
 a

 T
ai

l E
ve

nt

B
T

11
Q

B
T

14
Q

B
T

X
15

pr
ob

B
T

X
15

Q

H
_M

R
I

R
IX

T
LM

B
T

11
P

C
JI

Ju
m

pR
is

k

Ju
m

pR
P

l H
ill

A
D

B
ea

r

JU
M

P LE

-0.15

-0.10

-0.05

0.00

0.05

0.10

Le
ve

l 1
 D

ay
 P

rio
r 

to
 a

 N
on

-T
ai

l E
ve

nt

Figure 1. The upper panel of this figure displays the average levels of different tail risk measures
one day before (two-sigma or more) left tail events. In the lower panel, we display a simple placebo
test that shows the average level of the tail risk measures ahead of (absolute return of 0.02 sigma
or less) non-tail events. All tail risk measures are standardized to have a mean of zero and a
volatility of one. We separate the tail risk measures into four groups: Option-Implied (Group A),
Stock-Return-Based (Group B), Option-Return Based (Group C), and Macroeconomic Measures
(Group D). The colors indicate the intensity of the tail risk measures ahead of the events. The
definitions of the tail risk measure acronyms are in Table I.
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Figure 2. This figure displays the time-series of the standardized (mean of zero and standard
deviation of one) option-implied tail risk measures. For a better visualization, we average all daily
observations of the tail risk measures during a month. The shaded areas indicate business cycle
contractions as identified by the NBER. The definitions of the tail risk measure acronyms are given
in Table I.
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Figure 3. This figure displays the time-series of the standardized (mean of zero and standard
deviation of one) stock-return-based tail risk measures. For a better visualization, we average all
daily observations of the tail risk measures during a month. The shaded areas indicate business
cycle contractions as identified by the NBER. The definitions of the tail risk measure acronyms are
given in Table I.
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Figure 4. This figure displays the time-series of the standardized (mean of zero and standard
deviation of one) option-return-based- and macroeconomic tail risk measures. For a better visu-
alization, we average all daily observations of the tail risk measures during a month. The shaded
areas indicate business cycle contractions as identified by the NBER. The definitions of the tail risk
measure acronyms are given in Table I.
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Table II Summary Statistics

This table displays the summary statistics of the tail risk measures considered. The definitions of the tail risk measure

acronyms are given in Table I. We sort the tail risk measures into different categories based on their underlying data.

We present several time-series statistics. “Mean” denotes the time-series average, “SD” is the standard deviation.

For the remainder of the paper, we standardize the tail risk measures to have a mean of zero and a standard deviation

of one. “Median”, “Min” and “Max” denote the median, the lowest and the highest values, respectively, attained by

the measures. “Skewness” and “Kurtosis” denote the skewness and kurtosis of the measures’ distributions. Finally,

“AR(1)” denotes the first-order autocorrelation of the measures. All measures except for RIX, BT14Q, �Hill and

LE are available at the daily frequency. BT14Q is weekly, �Hill and RIX are monthly, and LE is quarterly. BT11P

is scaled by 100.

Mean SD Median Min Max Skewness Kurtosis AR(1)

Group A - Option-Implied Measures
BT11Q 0:3962 0:6099 0:2144 0:0060 10:4551 5:2393 45:0622 0:9280
BT14Q 0:0086 0:0046 0:0076 0:0023 0:0579 3:4557 28:2029 0:6107
BTX15prob 0:8299 0:5640 0:6490 0:0000 4:5502 1:5709 6:1317 0:9973
BTX15Q 0:0789 0:0359 0:0703 0:0021 0:3985 2:4158 13:4343 0:9320
H MRI 0:0000 1:9152 �0:4398 �2:3253 17:5014 3:5753 21:2163 0:9730
RIX 0:1572 0:0205 0:1545 0:1230 0:2402 1:3616 5:7250 0:8154
TLM 0:0437 0:0146 0:0403 0:0218 0:1628 1:8851 9:4089 0:9770

Group B - Stock-Return-Based Measures
BT11P 0:0058 0:0072 0:0038 0:0000 0:0864 2:6368 15:7063 0:0490
CJI 0:0152 0:0228 0:0095 �0:0194 0:1727 2:9916 15:0090 0:9823
JumpRisk 0:1596 0:0272 0:1651 0:0885 0:2089 �0:5478 2:4405 0:9988
JumpRP 0:7400 0:3102 0:6585 0:3556 1:9788 0:8626 2:9707 0:9646
�Hill 0:4426 0:0275 0:4450 0:3447 0:5054 �0:5789 3:8619 0:7538

Group C - Option-Return-Based Measures
ADBear �0:0963 0:7638 �0:3089 �0:9950 10:1970 2:8190 18:9207 0:6775
JUMP �0:0019 0:0518 �0:0083 �0:8375 1:2189 4:6072 99:0955 �0:0401

Group D - Macroeconomic Measures
LE 0:0885 0:1690 0:0331 �0:0266 1:0478 3:5552 17:7338 0:7904
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Table V Prediction of Tail Events

This table presents the coefficients from the predictive probit regressions. We perform single probit regressions of a

dummy variable on each lagged tail risk measure:

Dt+�t = a+ b � TRMt + �t+�t.

Dt+�t is 1 if the realized market excess return falls below the threshold defined by minus two times the current

conditional volatility. The conditional volatility is defined as the level of the VIX at the end of the previous day.

TRMt is the current observation of a tail risk measure. We use three different forecast horizons ∆t: (i) one-day

(Daily), (ii) one-week (Weekly), and (iii) one-month (Monthly). In parentheses, we present robust Newey and West

(1987) standard errors with 29 lags. The columns R2 present the McFadden R2s, multiplied by 100. “PCOneAll”,

“PCOneOption”, “PCOneStReturn”, and “PCOneOpReturn” denote the first PCs of all measures, option-implied,

stock-return-based, and option-return-based tail risk measures, respectively. ∗, ∗∗ and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:09∗∗∗ 1:22 0:08 0:68 0:03 0:08

(0:021) (0:048) (0:046)
BT14Q 0:07 0:53 0:08 0:56 0:08∗∗ 0:68

(0:042) (0:048) (0:041)
BTX15prob 0:00 0:01 �0:04 0:08 �0:12∗∗∗ 0:60

(0:060) (0:079) (0:040)
BTX15Q 0:04 0:17 0:04 0:12 0:00 0:01

(0:072) (0:073) (0:055)
H MRI �0:24 1:46 �0:12 0:49 �0:28 1:76

(0:183) (0:092) (0:271)
RIX �0:14 1:08 �0:09 0:55 �0:16∗∗ 1:13

(0:132) (0:106) (0:076)
TLM 0:08 0:55 0:06 0:28 0:04 0:14

(0:058) (0:084) (0:054)

Group B - Stock-Return-Based Measures
BT11P 0:02 11:37 0:02 0:83 0:05 1:05

(0:072) (0:055) (0:049)
CJI 0:12∗∗∗ 1:75 0:09 0:81 0:08 0:49

(0:044) (0:088) (0:074)
JumpRisk �0:03 0:07 0:02 0:03 0:35∗∗ 4:82

(0:107) (0:102) (0:144)
JumpRP 0:16∗∗ 2:06 0:05 0:20 0:11 0:92

(0:070) (0:100) (0:121)
�Hill �0:05 0:24 �0:04 0:18 0:08 0:39

(0:070) (0:081) (0:073)

Group C - Option-Return-Based Measures
ADBear 0:06 0:32 0:11∗∗ 1:15 0:05 0:22

(0:049) (0:053) (0:061)
JUMP �0:04 0:11 �0:03 0:06 0:05∗∗ 0:27

(0:055) (0:040) (0:027)

Group D - Macroeconomic Measures
LE 0:06 4:05 �0:01 0:20 0:07 0:63

(0:055) (0:092) (0:069)

PCOneAll 0:12∗∗ 12:57 0:05 1:01 0:06 1:09
(0:047) (0:092) (0:063)

PCOneOption 0:06 0:43 0:05 0:27 0:02 0:08
(0:057) (0:076) (0:044)

PCOneStReturn 0:15∗∗ 13:17 0:06 1:12 0:12 1:87
(0:064) (0:110) (0:111)

PCOneOpReturn 0:02 0:05 0:06 0:36 0:06 0:38
(0:046) (0:042) (0:043)
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Table VI Multiple Prediction of Tail Events

This table presents the coefficients from the predictive probit regressions. We perform multiple probit regressions of

a dummy variable on lagged tail risk measures:

Dt+�t = a+ b � TRMt + �t+�t.

Dt+�t is 1 if the realized market excess return falls below the threshold defined by minus two times the current

conditional volatility. The conditional volatility is defined as the level of the VIX at the end of the previous day.

TRMt is a vector of the current observations of the tail risk measures. We use four different forecast horizons ∆t: (i)

one-day (Daily), (ii) one-week (Weekly), and (iii) one-month (Monthly). For each forecast horizon, we first perform

variable selection based on the PcGets algorithm. Space left blank implies that a measure has not been chosen. In

parentheses, we present robust Newey and West (1987) standard errors with 29 lags. The columns R2 present the

partial McFadden R2s, obtained by dominance analysis, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:06∗∗ 1:09

(0:027)
BT14Q 0:12∗∗ 0:78 0:02 0:68

(0:054) (0:121)
BTX15prob �0:07 0:19 �0:45∗∗∗ 1:77

(0:088) (0:144)
BTX15Q

H MRI

RIX �0:14 0:90 �0:27∗ 1:99
(0:140) (0:138)

TLM 0:35 1:07
(0:217)

Group B - Stock-Return-Based Measures
BT11P

CJI 0:11∗∗ 1:72
(0:047)

JumpRisk

JumpRP

�Hill

Group C - Option-Return-Based Measures
ADBear

JUMP

Group D - Macroeconomic Measures
LE

Controls Y es Y es Y es
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Table VII Predictability of Left Tail Variation

This table presents the coefficients from a predictive regression for future left tail variation. We perform single

regressions of the standardized realized left tail variation on each lagged tail risk measure:

LTV P
t+�t = a+ b � TRMt + c � LTV P

t + d � V IXt + �t+�t.

TRMt is the current observation of a tail risk measure. We control for the lagged left tail variation LTV P
t and the

current level of the VIX (V IXt). We use three different forecast horizons ∆t: (i) one-day (Daily), (ii) one-week

(Weekly), and (iii) one-month (Monthly). In parentheses, we present robust Newey and West (1987) standard errors

with 29 lags. Statistical inference is based on the wild bootstrap of Rapach et al. (2013). The columns R2 present

the Lindeman et al. (1980) partial R2 of each tail risk measure, multiplied by 100. “PCOneAll”, “PCOneOption”,

“PCOneStReturn”, and “PCOneOpReturn” denote the first PCs of all measures, option-implied, stock-return-

based, and option-return-based tail risk measures, respectively. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%,

and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:19∗∗ 2:88 0:30∗∗ 8:52 0:14 9:27

(0:098) (0:173) (0:140)
BT14Q 0:10∗ 2:18 0:18∗ 6:67 0:09 6:05

(0:070) (0:133) (0:083)
BTX15prob �0:12∗∗ 0:96 �0:23∗ 2:99 �0:23∗∗ 3:40

(0:057) (0:152) (0:183)
BTX15Q 0:09∗∗ 1:95 0:13 5:42 0:02 4:77

(0:053) (0:111) (0:093)
H MRI 0:03∗ 0:31 0:05 0:97 �0:01 1:35

(0:020) (0:050) (0:041)
RIX �0:03 0:19 �0:06 0:60 �0:06 0:86

(0:028) (0:062) (0:081)
TLM 0:05 1:99 0:14 6:39 �0:07 6:73

(0:088) (0:219) (0:271)

Group B - Stock-Return-Based Measures
BT11P �0:01 0:23 0:04 1:30 0:06∗∗ 1:91

(0:046) (0:029) (0:034)
CJI 0:02 0:62 0:04 1:84 0:03 2:30

(0:030) (0:053) (0:055)
JumpRisk 0:03∗∗ 0:63 0:06∗∗ 1:95 0:09∗∗ 3:50

(0:014) (0:030) (0:076)
JumpRP �0:09∗ 1:18 �0:15 3:64 �0:03 4:18

(0:053) (0:164) (0:134)
�Hill 0:01 0:21 0:01 0:68 0:00 1:03

(0:018) (0:037) (0:050)

Group C - Option-Return-Based Measures
ADBear 0:01 0:22 0:02 0:64 0:06∗∗ 1:02

(0:026) (0:038) (0:049)
JUMP 0:04∗ 0:24 0:02 0:10 0:03∗∗∗ 0:16

(0:031) (0:014) (0:021)

Group D - Macroeconomic Measures
LE 0:03 0:89 0:06∗ 2:81 0:14∗∗∗ 5:83

(0:024) (0:041) (0:063)

PCOneAll 0:20∗∗ 2:30 0:32∗∗ 7:12 0:29∗∗ 8:47
(0:099) (0:145) (0:191)

PCOneOption 0:14 2:27 0:19 6:78 �0:05 7:08
(0:114) (0:223) (0:301)

PCOneStReturn �0:02 1:37 0:02 4:66 0:13 6:47
(0:064) (0:111) (0:119)

PCOneOpReturn 0:04 0:35 0:02 0:51 0:06∗∗ 0:81
(0:031) (0:032) (0:040)

Controls Y es Y es Y es
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Table VIII Multiple Predictability of Left Tail Variation

This table presents the coefficients from a predictive regression for future left tail variation. We perform multiple

regressions of the realized left tail variation on the lagged tail risk measures:

LTV P
t+�t = a+ b � TRMt + c � LTV P

t + d � V IXt + �t+�t.

TRMt is a vector of the current observations of the tail risk measures. We control for the lagged left tail variation

LTV P
t and the current level of the VIX (V IXt). We use three different forecast horizons ∆t: (i) one-day (Daily), (ii)

one-week (Weekly), and (iii) one-month (Monthly). For each forecast horizon, we first perform variable selection

based on the PcGets algorithm. Space left blank implies that a measure has not been chosen. In parentheses,

we present robust Newey and West (1987) standard errors with 29 lags. Statistical inference is based on the wild

bootstrap of Rapach et al. (2013). The columns R2 present the Lindeman et al. (1980) partial R2 of each tail risk

measure, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:19∗∗∗ 4:15 �0:02∗∗ 10:27

(0:046) (0:008)
BT14Q

BTX15prob

BTX15Q

H MRI

RIX

TLM

Group B - Stock-Return-Based Measures
BT11P

CJI

JumpRisk 0:04∗∗∗ 0:65
(0:015)

JumpRP

�Hill

Group C - Option-Return-Based Measures
ADBear

JUMP

Group D - Macroeconomic Measures
LE 0:04∗∗∗ 3:12 0:01∗∗∗ 4:76

(0:010) (0:004)

Controls Y es Y es Y es
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Table IX Return Predictability

This table presents the coefficients from a return predictability regression. We perform single regressions of the

market excess returns on each lagged tail risk measure:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is the current observation of a tail risk measure. We use the

following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically detrended

risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast horizons

∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually). In

parentheses, we present robust Newey and West (1987) standard errors with lag length chosen to be the maximum of

29 and the number of overlapping observations. Statistical inference is based on the wild bootstrap of Rapach et al.

(2013). The columns R2 present the Lindeman et al. (1980) partial R2 of each tail risk measure, multiplied by 100.

“PCOneAll”, “PCOneOption”, “PCOneStReturn”, and “PCOneOpReturn” denote the first PCs of all measures,

option-implied, stock-return-based, and option-return-based tail risk measures, respectively. ∗, ∗∗ and ∗∗∗ indicate

significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 35:96∗∗∗ 0:52 15:21∗∗ 0:51 6:64∗ 0:48 2:85∗ 2:17

(7:350) (5:613) (4:504) (1:915)
BT14Q 5:15 0:02 0:70 0:02 �4:18∗ 0:34 0:71 0:56

(6:213) (4:386) (2:742) (1:713)
BTX15prob 11:67∗∗ 0:07 7:40 0:24 8:41∗∗ 1:18 �2:13 0:49

(6:121) (5:518) (4:242) (3:193)
BTX15Q 1:50 0:01 �3:19 0:03 �3:37 0:14 1:14 1:61

(5:816) (5:227) (3:141) (2:337)
H MRI �7:23∗∗ 0:02 �2:98 0:04 �0:65 0:09 3:10 1:01

(4:028) (3:313) (2:917) (2:620)
RIX 2:48 0:02 3:16 0:13 3:35 0:61 0:25 1:32

(5:927) (5:402) (4:528) (3:315)
TLM 26:51∗∗∗ 0:26 13:48∗∗ 0:50 4:11 0:50 �0:73 0:77

(8:577) (6:277) (4:563) (2:825)

Group B - Stock-Return-Based Measures
BT11P 25:95∗∗∗ 0:63 13:89∗∗∗ 0:96 3:91∗∗∗ 0:29 0:58 0:10

(5:859) (2:855) (1:383) (0:394)
CJI 3:75 0:01 1:49 0:03 �0:03 0:05 1:22 0:70

(4:335) (4:330) (2:941) (1:285)
JumpRisk �5:67 0:01 �7:73∗ 0:05 �10:91∗∗ 0:55 �15:36∗∗∗ 12:30

(5:754) (5:798) (5:197) (2:654)
JumpRP 15:94∗∗∗ 0:11 11:29∗∗ 0:38 4:72 0:52 �2:14 0:46

(5:360) (4:721) (3:997) (2:319)
�Hill �0:42 0:00 1:36 0:05 0:04 0:08 6:25∗∗∗ 9:38

(4:057) (4:015) (3:469) (1:610)

Group C - Option-Return-Based Measures
ADBear 19:16∗∗∗ 0:39 13:31∗∗∗ 1:07 3:30∗∗ 0:30 �0:10 0:01

(4:820) (3:073) (1:565) (0:381)
JUMP 2:83 0:01 5:80∗∗∗ 0:20 1:14∗ 0:03 0:20 0:01

(6:084) (1:585) (0:703) (0:141)

Group D - Macroeconomic Measures
LE 2:20 0:01 0:45 0:03 3:14 0:09 �2:27 0:49

(7:517) (7:774) (5:657) (2:816)

PCOneAll 34:45∗∗∗ 0:29 18:66∗∗∗ 0:54 8:19∗ 0:68 1:18 1:38
(8:736) (6:265) (4:955) (2:975)

PCOneOption 22:46∗∗∗ 0:18 9:16∗ 0:26 2:74 0:33 0:52 1:21
(8:518) (6:161) (4:788) (3:112)

PCOneStReturn 24:42∗∗∗ 0:25 14:23∗∗∗ 0:49 5:39∗ 0:41 �2:27 0:79
(5:310) (4:605) (3:644) (1:983)

PCOneOpReturn 14:06∗∗∗ 0:21 12:22∗∗∗ 0:89 2:84∗∗ 0:22 0:06 0:00
(5:477) (2:523) (1:294) (0:271)

Controls Y es Y es Y es Y es
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Table X Multiple Return Predictability

This table presents the coefficients from a return predictability regression. We perform multiple regressions of the

market excess returns on lagged tail risk measures:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is a vector of the current observations of the tail risk measures.

We use the following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically

detrended risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast

horizons ∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually).

For each forecast horizon, we first perform variable selection based on the PcGets selection algorithm. Space left blank

implies that a measure has not been chosen. In parentheses, we present robust Newey and West (1987) standard

errors with lag length chosen to be the maximum of 29 and the number of overlapping observations. Statistical

inference is based on the wild bootstrap of Rapach et al. (2013). The columns R2 present the Lindeman et al. (1980)

partial R2 of each tail risk measure, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1%

level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 47:61∗∗∗ 0:53 10:47∗ 0:57 6:35∗∗∗ 6:42

(10:620) (5:865) (0:831)
BT14Q �6:45∗∗ 0:63

(2:499)
BTX15prob 8:32∗∗ 1:31

(4:793)
BTX15Q �21:81∗∗∗ 0:12 �21:65∗∗∗ 0:44 �8:22∗∗∗ 0:36

(8:673) (6:785) (3:136)
H MRI

RIX

TLM 22:23∗∗∗ 0:53
(7:645)

Group B - Stock-Return-Based Measures
BT11P 17:39∗∗∗ 0:46 7:35∗∗∗ 0:51

(5:906) (2:697)
CJI

JumpRisk �13:26∗∗∗ 7:93
(3:057)

JumpRP

�Hill

Group C - Option-Return-Based Measures
ADBear 8:78∗∗∗ 0:70

(3:063)
JUMP

Group D - Macroeconomic Measures
LE

Controls Y es Y es Y es Y es
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Table XIII Cross-Sectional Return Predictability (Value-Weighted)

This table presents the average annualized percentage excess returns of quintile portfolios sorted on the stock loadings

on the different tail risk measures. Each month, we estimate the tail risk loadings (bi) for each stock based on a

rolling historical window:
Rit+�t = ai + bi � TRMt + �it,

Rit+�t is the excess return of stock i over the period between t and ∆t. TRM t is the current observation of a tail risk

measure. We forecast stock returns at the daily frequency and use a window length of one month for all measures

available at the daily frequency, and accordingly longer windows for measures available on lower frequencies. Based on

their current bi we then sort the stocks into quintile portfolios and obtain the value-weighted portfolio excess return

over the next month. We repeat the entire procedure in the next month. The High� Low portfolio simultaneously

buys the stocks in the portfolio with the highest bi and sells those in the portfolio with the lowest bi. In parentheses,

we report robust Newey and West (1987) standard errors using 22 lags. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

Low (2) (3) (4) High High� Low
Group A - Option-Implied Measures
BT11Q 11:01∗∗∗ 10:01∗∗∗ 9:49∗∗∗ 6:33∗ 1:53 �9:48∗∗∗

(3:305) (3:260) (3:021) (3:584) (5:806) (3:445)
BT14Q 5:41 6:98 6:98∗ 7:73∗∗ 6:78∗ 1:37

(5:131) (4:230) (3:900) (3:618) (4:079) (2:887)
BTX15prob 9:51∗∗ 8:16∗∗ 7:69∗∗ 6:71 3:18 �6:33∗

(4:753) (3:516) (3:021) (4:123) (5:083) (3:249)
BTX15Q 4:60 8:27∗∗ 9:34∗∗∗ 7:08∗ 6:95 2:35

(4:685) (3:303) (3:189) (3:745) (5:186) (3:390)
H MRI 8:99∗∗ 8:19∗∗ 7:23∗∗ 6:74 5:32 �3:68

(4:536) (3:905) (3:610) (4:120) (4:869) (2:586)
RIX 9:04∗∗∗ 7:02∗∗ 6:87∗∗ 6:63 6:31 �2:73

(3:466) (3:535) (3:182) (4:158) (6:253) (3:796)
TLM 9:16∗∗ 9:30∗∗∗ 7:83∗∗ 7:62∗∗ 2:66 �6:51∗

(3:973) (3:111) (3:350) (3:683) (5:725) (3:338)

Group B - Stock-Return-Based Measures
BT11P 9:52∗∗ 10:00∗∗∗ 7:34∗∗ 5:76 4:14 �5:38∗

(4:577) (3:080) (3:431) (3:917) (5:672) (2:773)
CJI 4:01 8:76∗∗ 8:39∗∗∗ 8:16∗∗ 5:54 1:53

(4:768) (3:885) (3:023) (3:416) (4:892) (2:282)
JumpRisk 8:71∗∗ 9:66∗∗∗ 8:38∗∗∗ 6:04 3:54 �5:17∗

(3:837) (3:097) (3:007) (3:956) (5:782) (2:999)
JumpRP 9:74∗∗∗ 8:42∗∗ 7:35∗∗ 7:30∗ 4:34 �5:39

(3:538) (3:458) (3:119) (3:756) (5:669) (3:397)
�Hill 11:88∗∗ 7:30∗∗ 7:44∗∗ 6:52∗ 4:93 �6:95

(5:390) (3:625) (3:586) (3:902) (5:084) (4:726)

Group C - Option-Return-Based Measures
ADBear 7:56∗ 8:80∗∗ 8:12∗∗ 7:85∗∗ 3:39 �4:17

(4:500) (3:468) (3:201) (3:477) (5:135) (2:680)
JUMP 7:88∗∗ 9:14∗∗∗ 8:29∗∗∗ 8:30∗∗ 2:98 �4:90

(3:902) (3:073) (3:110) (3:475) (6:521) (4:157)

Group D - Macroeconomic Measures
LE 6:63 7:40∗ 8:33∗∗ 7:13∗ 6:65 0:03

(4:988) (3:777) (3:325) (3:680) (4:126) (2:056)
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Table XIV Industrial Production

This table presents the coefficients from a predictive regression for industrial production growth. We perform single

regressions of the log growth rate in industrial production (in percentage points) on each tail risk measure, averaged

over the previous month:
INDt+�t = a+ b � TRM t + �t+�t,

IND�t is the log change in industrial production over the period ∆t. TRM t is the current observation of a tail risk

measure, computed as the average of all observations during month t. We use two different forecast horizons ∆t:

(i) one month (Monthly) and (ii) one year (Annually). In parentheses, we present robust Newey and West (1987)

standard errors with 14 lags. Statistical inference is based on the wild bootstrap of Rapach et al. (2013). The columns

R2 present the R2s multiplied with 100. “PCOneAll”, “PCOnePortfolio”, “PCOneOption”, and “PCOneReturn”

denote the first principal components of all measures, the option-implied, stock-return-based and option-return-based

tail risk measures, respectively. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q �0:24∗∗ 15:75 �0:60∗∗ 12:09

(0:063) (0:423)
BT14Q �0:12 6:36 0:11 10:44

(0:090) (0:810)
BTX15prob �0:15∗ 8:09 �0:72 12:84

(0:100) (1:421)
BTX15Q �0:16∗ 8:80 0:06 10:40

(0:084) (1:168)
H MRI 0:07 4:20 0:55 11:83

(0:061) (1:818)
RIX �0:18∗∗ 10:30 �0:09 10:42

(0:072) (1:007)
TLM �0:19∗ 10:99 �0:54 11:74

(0:095) (0:932)

Group A - Option-Implied Measures
BT11P �0:22∗∗∗ 12:61 �1:28∗∗∗ 15:70

(0:064) (0:534)
CJI �0:04 3:53 �0:34 10:94

(0:118) (1:065)
JumpRisk �0:18∗∗ 9:74 �1:42∗∗∗ 19:92

(0:070) (1:576)
JumpRP �0:14∗ 7:65 �0:78 13:23

(0:090) (1:705)
�Hill 0:07 4:16 0:80∗ 13:43

(0:082) (1:132)

Group A - Option-Implied Measures
ADBear �0:06∗∗ 3:93 �0:88∗∗∗ 14:04

(0:026) (0:370)
JUMP 0:02 3:24 �0:30∗ 10:81

(0:030) (0:264)

Group A - Option-Implied Measures
LE �0:21∗∗ 12:03 �0:61 11:43

(0:085) (3:385)

PCOneAll �0:21∗∗ 11:33 �0:65∗ 9:55
(0:087) (1:125)

PCOneOption �0:20∗∗ 11:99 �0:39 11:09
(0:088) (0:434)

PCOneStReturn �0:19∗∗ 10:23 �1:21∗∗ 14:76
(0:094) (1:330)

PCOneOpReturn 0:02 3:22 0:68∗∗∗ 12:58
(0:028) (0:339)
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OA1. Tail Risk Measures

In this section, we describe the tail risk measures in more detail. For further information, we

refer the reader to the original papers.

A. Option-Implied Measures

Unless explicitly stated otherwise, for all option-implied measures we follow Bollerslev and

Todorov (2011b) and use the options with the shortest maturity available, but with at least 8 days

to expiration.

BT11Q Bollerslev and Todorov (2011b) construct a measure of tail risk perceived by investors

that is based on close-to-maturity deep out-of-the-money options. They use the insights of the

quadratic variation to decompose the volatility into two separate parts in a model-free fashion. To

isolate extreme tail risks, they use only deep out-of-the-money options. Only a rare event will be

large enough to affect the prices of these derivatives significantly. Bollerslev and Todorov (2011b)

use the following definition of the price of a call and put (Ct(K), Pt(K)):

er(t;T ]Pt(K) ≈
Z T

t
EQ
t

�Z

R
1Fs−>Kmax(0;K − Fs−ex)vQ

S (dx)
�
ds,

to construct the model-free risk-neutral jump tail measures:

LTQ
t (k) ≡ 1

T − t

Z T

t

Z

R
max(0; ek − ex)EQ

t (vQ
S (dx))ds ≈ er(t;T ]Pt(K)

(T − t)Ft−
. (OA1)

We use the approximation above for the calculation of our tail risk measure. The log-moneyness

is k = log(K=Ft−). K is the option’s strike price and Ft− is the futures price for the aggregate

market portfolio. T − t denotes the time-to-maturity as a fraction of a year. As in Bollerslev and

Todorov (2011b), we interpolate the option price to the desired moneyness levels, here 0.9, using

Black and Scholes (1973) implied volatilities.

BT14Q, BTX15Q, and BTX15prob Bollerslev and Todorov (2014) and Bollerslev et al.

(2015) construct a tail risk estimate using the information from the entire panel of available short-

1
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maturity options. The option price is Ot,τ (k) at time t with time-to-maturity � , price Xt and the

log-moneyness is k = log(K=Ft−,τ ). Bollerslev and Todorov (2011a) show that the jump intensity

can be formulated in the following way, with a time-varying shape parameter �−:

ert;�Ot,τ (k)

Ft−,τ
≈ ��+

t ek(1−α−t )

�−t (�−t − 1)
, if k < 0,

for the risk-free rate ert;� over period [t,t+� ]. In combination with the extreme-value approximation,

Bollerslev and Todorov (2014) follow that the level shift parameter �±t can be purged from the ratio

of logarithmic prices, if options with the same time-to-maturity, but different levels of moneyness

(k1 < k2), are considered:

�̂t− = argmin
α−t

1

N−t

N−tX

i=2

g

0

@
log
�

Ot;�t (kt;i)
Ot;� (kt;i−1)

�

kt,i − kt,i−1
− (1 + �−t )

1

A .

Thus, Bollerslev and Todorov (2014) conclude that the tail shape �− can be estimated from

an increasing span of options over either an increasing range of strikes or an increasing sample

span. This method imposes only a parametric structure on the jump intensity, not on the level

shift estimates (�−). Because option data is not continuously available, Bollerslev and Todorov

(2014) pool the parameters and obtain weekly, monthly, or annual tail shape parameter estimates.

Because of the noise of the parameters �−t Bollerslev and Todorov (2014) propose the following

parametric model, to smooth the estimates:

�−j = �−0 + �−1 �
−
j−1 + �−2 log(1 +QV c

τj−1,τj ) + �−3 log(1 +QV d
τj−1,τt) + �−j (OA2)

where j = 1; :::; J refers to the weeks in the sample and QV to the quadratic variation of the series

(the variation that includes both jumps and continuous variation). QV c refers to the continuous

variation in the sample and QV d to the discontinuous portion of the total variation. Bollerslev and

2
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Todorov (2014) then subsequently estimate the model using the function:

�̂− = argmin
β−

JX

j=1

τjX

t=τj−1

1

N−t

N−tX

i=2

g

0

@
log(

Ot;�t (kt;i)
Ot;� (kt;i−1))

kt,i − kt,i−1
−
�

1− �−0 − �
−
1 �̂
−
j−1 − �

−
2 log(1 +QV c

(τj−1,τj ])− �
−
3 log(1 +QV d

(τj−1,τj ])
�
1

A ,

and omit all variables that are insignificant at the 5% level. QV is calculated using 5-minute prices.

To estimate the tail of the distribution, not only the tail shape �±t needs to be estimated, but also

the level shift �±t . After the estimation of �±t , �±t can be estimated in a second step:

�̂−t = argmin
φ−t

=
1

N−t

N−tX

i=1

����log
�
ert;�Ot,τ (kt,i)

�Ft,τ

�
− (1 + �̂−t )kt,i + log(�̂−t + 1) + log(�̂−t )− log(�−)

���� .

In turn, the jump intensity process is characterized by: vQ
t = (�+

t e−α
+
t x1x>0 + �−e−α

−
t |x|1x<0),

and can be estimated via:

LJV Q
t,t+τ =

��−t e−α
−
t |kt|(�−t kt(�

−
t kt + 2) + 2)

(�−t )3 : (OA3)

kt is a threshold that serves as a cutoff point at each tail, we define it as: kt = 10�ATM,30d
p

5=252,

�ATM,30d is the at-the money 30-day volatility of the interpolated option surface obtained from

Option Metrics.

Alternatively, Bollerslev et al. (2015) obtain the estimates for �̂−t and �̂−t with a non-parametric

estimation:

�̂−t = median

������
1−

log Ot;� (kt;i)
Ot;� (kt;i−1)

kt,i − kt,i−1

������
;

�̂−t = median

�����
log

 
ert;�Ot;� (kt;i)

�Ft,τ

!

− (1− �̂−t )kt,i + log(�̂−t + 1) + log(�̂−t )

�����
.

(OA4)

The current tail estimates are measures of return variation expected by the market in the left

or the right tail of the distribution. The threshold depends on the current volatility. It might also

3
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be useful to consider a constant threshold and obtain the probability, similar to the commonly used

Value-at-Risk (VaR). For a probability measure that captures the probability of a 10% crash over

the next week, the equation can be rearranged in the following way:

LeftProbt = 100�̂−t
e−α̂

−
t |kt|

�̂−t
. (OA5)

In our analysis we will use the probability measure and the left tail risk measure, estimated

non-parametrically and the parametrically smoothed and estimated left tail risk measure, both of

which have a correlation of just 75%.

H MRI Gormsen and Jensen (2020) develop a measure of higher-moment risk, based on the

out-of the money put and call options. They use the inference techniques developed by Breeden

and Litzenberger (1978) and Bakshi, Kapadia, and Madan (2003) to infer the ex-ante moments.

The moments are estimated from out-of the money put and call options, using the following repre-

sentation:

Et[Rnt,T ] =
(Rft,T )n+γ +Rft,T

hPN
i=1

(γ+n)(γ+n−1)
S+n (StRft,T − Ft,T +Ki)

n+γ−2Ωt,T (Ki)∆Ki

i

(Rft,T )γ +Rγt,T
hPN

i=1
γ(γ−1)
S (StRft,T −Rt,T +Ki)γ−2Ωt,T (Ki)∆Ki

i ;

Ωt,T =

8
>><

>>:

callt,T (K) if K ≥ Ft,T ;

putt,T (K) if K < Ft,T ;

∆Ki =

8
>>>>>>><

>>>>>>>:

Ki+1 −Ki if i = 1;

Ki −Ki−1 if i = N;

Ki+1−Ki−1
2 else.

(OA6)

Strike prices K1, ..., KN of the N out-of-the money options are in ascending order. The moments

4
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are then calculated using the following calculations:

Skewnesst,T =
Et[R3

t,T ]− 3Et[Rt,T ]Et[R2
t,T ] + 2Et[Rt,T ]3

(Et[R2
t,T ]− Et[Rt,T ]2)(3/2) ;

Kurtosist,T =
Et[R4

t,T ]− 3Et[Rt,T ]4 + 6Et[Rt,T ]2Et[R2
t,T ]− 4Et[Rt,T ]Et[R3

t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)2 ;

Hyperskewnesst,T =

Et[R5
t,T ] + 4Et[Rt,T ]5 + 10Et[Rt,T ]2Et[R3

t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)(5/2) +

−10Et[Rt,T ]3Et[R2
t,T ]− 5Et[Rt,T ]Et[R4

t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)(5/2) ;

Hyperkurtosist,T =

Et[R6
t,T ]− 5Et[Rt,T ]6 + 15Et[Rt,T ]4Et[R2

t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)3 +

−20Et[Rt,T ]3Et[R3
t,T ] + 15Et[Rt,T ]2Et[R4

t,T ]− 6Et[Rt,T ]Et[R5
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)3 :

We linearly interpolate between the times-to-maturity to generate the moments with constant 30-

day time-to-maturity. To obtain the higher-moments risk index, we use the first PC of the four

measures. The first PC loads positively on the kurtosis measures and negatively on the skewness

measures.

RIX Gao et al. (2018) and Gao et al. (2019) construct an index for tail risk concern (RIX).

They use two option portfolios to model the expected downside movement of the market. The two

portfolios have the following design:

IV − ≡ 2erτ

�

Z

K<Xt

1

K2P (Xt;K; �)dK;

V − ≡ 2erτ

�

Z

K<Xt

1− log(K=Xt)

K2 P (Xt;K; �)dK:
(OA7)

Both portfolios differ on how they assign weight to out-of-the money put option prices, V − assigns

relatively larger weight to deeper out-of-the money options. The resulting index is constructed by

going long in the portfolio with higher exposure to deep out-of-the money options (V −) and short

the portfolio with a lower exposure (IV −), resulting in a positive exposure of the portfolio towards

jump risk, while being relatively immune to volatility risk. In order to estimate both portfolios, we

interpolate the implied volatility of the options with a cubic spline along the moneyness, following

5
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Gao et al. (2018). This way, we generate 2,000 artificial options in a strike range between zero and

three times the price of the underlying. For artificial options outside the observed strike range, we

constantly extrapolate the implied volatilities. The resulting portfolio can be constructed with the

following weights (Gao et al., 2018):

RIX− ≡ V − − IV − =
2erτ

�

Z

K<Xt

log(Xt=K)

K2 P (Xt;K; �)dK, (OA8)

where r is the constant risk-free rate and P is the price of the out-of-the money put option with

maturity � and strike price K. We use a trapezoidal rule to approximate the integrals. Finally,

we linearly interpolate between the two times-to-maturity closest to (above and below) 30 days to

generate the RIX− with a constant 30-day time-to-maturity.

TLM Vilkov and Xiao (2015) build on Extreme Value Theory (EVT) to estimate the measure

of tail risk implied from option prices under the risk-neutral measure. According to EVT, the price

Pt(K) of an out-of-the-money put option can be calculated using the rules of conditional volatilities.

Combining the equations of the EVT, Vilkov and Xiao (2015) rewrite the price of a further

out-of-the money option as a function of an option that is closer at-the-money.

Pt(K1) = Pt(K)

�
1 + � × K −K1

�(K)

�1−1/ξ
: (OA9)

Vilkov and Xiao (2015) use the above equation to price deep out-of-the-money puts relative

to a boundary put. Then, they compare the theoretically obtained price with the empirical price

and infer the parameters �(K) and � by minimizing the pricing errors. Finally, Vilkov and Xiao

(2015) estimate the tail loss measure on a given threshold via TLM = β(K)
1−ξ , which they estimate

6
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as follows:

K0,τ = St

 

1− 2
[V IXt=100√

12

!

;

[V IXt =
1

63

62X

i=0

V IXt−i;

P ∗i,t = P ∗0,t

�
�t
�t

(K0,t −Ki,t) + 1

�1−1/ξt
;

{�t; �t} = argmin
n−1X

i=0

�����
Pi,t − P ∗i,t

P ∗i,t

�����
;

TLM =
�t

1− �t
:

B. Stock-Return-Based Measures

BT11P Bollerslev and Todorov (2011a) use a threshold estimator. To identify the presence of

jumps, they use the bipower variation (BVt) proposed by Barndorff-Nielsen and Shephard (2004,

2006) and the realized variation (RVt). The bipower measures should only identify the continuous

part of the variation and an exceedance should clearly indicate the jumps, Bollerslev and Todorov

(2011a) use for the threshold:

�t = 4
p
BVt ∧RVt.

To avoid false positives, Bollerslev and Todorov (2011a) use a time-of-day factor (TOD), to adjust

alpha for the intraday pattern of volatility. Bollerslev and Todorov (2011b) say any � > 0 and

! ∈ (0; 0:5) would work, but they fix ! to 0.49. �, however, is chosen as displayed above. They

define the TOD factor in the following way:

TODi =NOIi

PN
t=1(pt−1+πt+i�n;t − pt−1+πt+(i−1)�n;t)21|pt−1+�t+i�n;t−pt−1+�t+(i−1)�n;t |≤�α�0:49

n
PN

t=1
PM

i=1(pt−1+πt+i�n;t − pt−1+πt+(i−1)�n;t)
2

, where

NOIi =

PN
t=1
Pn−1

i=1 1|pt−1+�t+i�n;t−pt−1+�t+(i−1)�n;t |≤�α�0:49
n

PN
t=1 1|pt−1+�t+i�n;t−pt−1+�t+(i−1)�n;t |≤�α�0:49

n

, and

�̄ =4

r
�
2

vuut 1

N

NX

t=1

n−1X

i=2

|pt−1+πt+i�n;t − pt−1+πt+(i−1)�n;t ||pt−1+πt+(i−1)�n;t − pt−1+πt+(i−2)�n;t |:

7

Electronic copy available at: https://ssrn.com/abstract=3789005



Thus, the intraday � is:

�t,i = 4
p
BVt ∧RVt × TODi ×∆0.49

n . (OA10)

Bollerslev and Todorov (2011a) define the following parameter vector that can be estimated:

� ≡ (�−; �−; k−0 v̄
−
ψ (%T ); k−1 v̄

−
ψ (%T )). The estimation is based on the scores associated with the

log-likelihood function of the generalized Pareto distribution. Specifically Bollerslev and Todorov

(2011a) estimate the following equations:

1

N

NX

t=1

n−1X

j=1

�−i ( −(∆n,t
j p)− tr−)1ψ−(�n;t

j p)>tr− = 0;

1

N

NX

t=1

n−1X

j=1

1ψ−(�n;t
j p)>tr− − (1− �)k−0 v̄

−
ψ (%T )− k−1 v̄

−
ψ (%T ))CVt = 0;

1

N

NX

t=2

0

@
n−1X

j=1

1ψ−(�n;t
j p)>tr− − (1− �)k−0 v̄

−
ψ (%T )− k−1 v̄

−
ψ (%T ))CVt

1

ACVt−1 = 0;

and (1− �)
1

N

NX

t=1

(pt+φt − pt)2 − � 1

N

NX

t=1

RVt = 0:

n = 1
�n

is the number of high-frequency price observations over one day. ∆n,t
i p := pt+iδn−pt+(i−1)�n

refers to the corresponding price increments over one day. Furthermore Bollerslev and Todorov

(2011a) define the tail parameter as tr−, such that it corresponds in log-prices of 0.6%. For tr−

this implied e0.006 ≈ 1:006 for the left tails, respectively.

CJI Christoffersen et al. (2012) fit a parametric model. To investigate the tail risk dynamics

using daily returns, the authors propose four nested models; we present the most general and

best performing model, the DVSDJ model (dynamic volatility with separate dynamic jumps). The

model can be estimated using only return data, or both option and return data. They propose the

following model specifications:

hz,t+1 = wz + bzhz,t +
az
hz,t

(zt − czhz,t)2 + dz(yt − ez)2;

hy,t+1 = wy + byhy,t +
ay
hz,t

(zt − cyhz,t)2 + dy(yt − ey)2:
(OA11)

8
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hz,t+1 is the return innovation for the market price of risk of the normal component, while hy,t+1

is the return innovation for the market price of risk of the jump component. In order to obtain the

unobservable measures, Christoffersen et al. (2012) propose a filtering technique for the returns to

obtain the number of jumps (nt), the normal component of the return (zt) and the jump component

of the return (yt). Then, the variance of the normal, and the jump component can be determined.

First, Christoffersen et al. (2012) use Bayes’ rule to filter the density:

Prt(nt = j) ≡ Prt−1(nt = j|xt) =
ft−1(xt|nt = j)Prt−1(nt = j)

ft−1(xt)
; (OA12)

where

ft(xt+1|nt+1 = j) =
1

p
2�(hz,t+1 + j�2)

exp
�
−(xt+1 − �t+1 − j�)2

2(hz,t+1 + j�2)

�
;

P rt(nt+1 = j) =
(hy,t+1)j

j!
exp(−hy,t+1);

ft(xt+1) =

∞X

j=0

ft(xt+1|nt+1 = j)Prt(nt+1 = j).

Prt(nt = j) is the ex-post inference on nt. Multiplying the density function by the amount

of jumps results in the filtered number of jumps: ñt =
P∞

j=0 jPrt(nt = j). To solve the ex-post

filtration on the normal component, Christoffersen et al. (2012) filter the expectation of zt. If the

return and the number of jumps are known, Christoffersen et al. (2012) define zt in the following

way:

zt(xt; nt = j) =

s
h̃z,t

h̃z,t + j�2
(xt − �t − j�). (OA13)

h̃z,t is the filtered hz,t, �t is the first conditional return moment; Christoffersen et al. (2012) define

it as follows: �t = r+(�z−0:5)hz,t+(�y−�). The expectation can be solved via the following sum-

mation: z̃t = Et[zt] =
P∞

j=0 zt(xt; nt = j)Prt(zt; nt = j), where Prt(zt; nt = j) ≡ Prt−1(zt; nt =

j|xt) ∝ Prt−1(zt|xt; nt = j)Prt(nt = j).

Prt−1(zt|xt; nt = j) = Prt−1(xt; nt = j|xt; nt = j)
r

~hz;t
~hz;t+jδ2 , the first term on the right-hand-

9
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side of this equation is one, using this equation, and Equation (OA13) to be:

z̃t =
∞X

j=0

zt(xt; nt = j)Prt−1(zt|xt; nt = j)Prt(nt = j)

=
∞X

j=0

h̃z,t
h̃z,t + j�2

(xt − �t − j�)Prt(nt = j).
(OA14)

From z̃t Christoffersen et al. (2012) can directly infer the filtered jump innovation ỹt. It is given

by ỹt = xt − �t − z̃t. With the two variables, the filtered variance and the jump intensity for the

next period can be computed:

h̃z,t+1 = wz + bzh̃z,t +
az
h̃z,t

(z̃t − czh̃z,t)2 + dz(ỹt − ez)2;

h̃y,t+1 = wy + byh̃y,t +
ay
h̃z,t

(z̃t − cyh̃z,t)2 + dy(ỹt − ey)2.

(OA15)

For the likelihood at time t=0, Christoffersen et al. (2012) assume that the time-series is equal

to the mean of the filtered time-series from the prior iteration. With the filtered data, Christoffersen

et al. (2012) conduct the following optimization via maximum likelihood:

Lreturns =
τ−1X

t=1

log(ft(xt+1)) =
τ−1X

t=1

log

0

@
∞X

j=0

ft(xt+1|nt+1=j)Prt(nt+1 = j)

1

A ; (OA16)

with

ft(xt+1|nt+1 = j) =
1

q
2�(h̃z,t+1 + j�2)

exp

 

−(xt+1 − �t+1 − j�)2

2(h̃z,t+1 + j�2)

!

;

P rt(nt+1 = j) =
(h̃y,t+1)j

j!
exp(−h̃y,t+1).

JumpRisk and JumpRP Maheu et al. (2013) estimate a stochastic jump model to calcu-

late the time-varying jump risk from the daily returns of a time-series. They use a utility-based

framework to achieve this. Maheu et al. (2013) assume that the innovation in the return process

stems from two stochastic processes, �1,t = �t ∗N(0; 1) and �2,t =
Pn+1

K=1N(�; �2)− ��t. To obtain
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the measure Maheu et al. (2013) estimate the following system of equations:

P (nt = j|Φt−1) =
eλt�jt
j!

, j = 0; 1; 2; :::;

�t = E[nt|Φt−1] = �0 + ��t−1 + �t−1;

�t−1 =
∞X

j=0

jP (nt−1 = j|Φt−1)− �t−1;

E[�t] =
�0

1− �
;

E[�t+i|Φt−1] =

8
>><

>>:

�t i = 0:

�0(1 + p+ :::+ pi−1) + p�t i ≥ 1:

�t = �0 + (�− )�t−1 + E[nt−1|Φt−1]:

As a start value for �t Maheu et al. (2013) use E[�t], for �1 we choose 0. Maheu et al. (2013)

calculate first the following result:

P (nt+1 = j|Φt+1; �) =
f(rt+1|nt+1 = j;Φt; �)P (nt+1 = j|Φt; �)

f(rt+1|Φt; �)
; (OA17)

f(rt+1|nt+1 = j;Φt; �) =
1

p
2�(�2

t + j�2)
e
−0.5

(rt+1−mt−�1(rt−mt−1)−�2(rt−1−mt−2)−(j−�t)�)
2

�2
t+j�2 ;

P (nt+1 = j|Φt; �) =
e−λ

j
t−1�jt−1
j!

, j = 0; 1; 2; :::;

f(rt+1|Φt; �) =

∞X

j=0

f(rt+1|nt+1 = j;Φt)P (nt+1 = j|Φt);

�t = �0 + ��t−1 + �t− 1;

E[�t] =
�0

1− �
:

As Maheu et al. (2013) state, risk premia in their model behave opposite to the current state of

volatility and jump risk. This often leads to low estimations in crisis periods. Thus, we conduct the

regressions with inverse jump risk premia. We use two measures from this estimation. We use the

risk of a jump (�t) and we use the jump risk premium, which is calculated using the first derivative

of the equity risk premium (mt) with respect to �t.
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�Hill Kelly and Jiang (2014) assume that returns obey the dynamic power law structure for

equity returns. In their specification, the tail distribution obeys a potentially time-varying power

law. In order to improve upon a main obstacle, the low sample size for individual returns, Kelly

and Jiang (2014) exploit the information in the cross-section of stock returns. Thus, they assume

that all individual assets have tail risks that are governed by a single process. Kelly and Jiang

(2014) apply the power law of Hill (1975). The estimator is defined for a pooled cross-section as

follows:

�Hillt =
1

Et

EtX

k=1

log
�
Xk,t

ut

�
: (OA18)

ut is the extreme-value threshold in month t. Et is the total number of exceedances of ut in a

month, all cross-sectional returns in this month are considered; this is without loss of generality,

because this estimator does not consider any differences in the tails for each company. ut is chosen

by the econometrician to define where the tail of the distribution begins. Kelly and Jiang (2014)

define the threshold as the fifth percentile of the cross-section in the sample. The estimator only

considers exceedances of ut for the power law. Kelly and Jiang (2014) refer to this exponent as tail

risk. To remove dependencies in the returns of the observed returns, Kelly and Jiang (2014) use

the residuals from a regression with the common return factors of Fama and French (1993).

C. Option-Return-Based Measures

ADBear Lu and Murray (2019) construct another measure that uses option portfolios. They

create a portfolio that yields a positive payoff of $1 when the S&P 500 is below a certain threshold

K2. To create a tradeable position of this portfolio, they take a short position in a put option with

strike price K1 > K2 and a short position in a put option with strike price K2. Then they scale

the positions by K1 −K2 to achieve the desired payoff. This generates a payoff that is $1 below

K2 and is linearly decreasing between K2 and K1. The price of the portfolio is then the following:

PAD Bear =
P (K1)− P (K2)

K1 −K2
. (OA19)
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Lu and Murray (2019) define K2 to be 1.5 standard deviations below the S&P 500 index forward

price. This threshold is chosen based with the objective of capturing the pricing of the extreme left

tails of the index, while avoiding the noise of the extreme tails. K1 is chosen to be 0.5 standard

deviations above K2. The standard deviation is the level of the VIX index divided by 100, multiplied

by the square root of the time to maturity. In order to create a price for the desired out-of-the-

money put option, Lu and Murray (2019) calculate the price to be the volume weighted average

price of the put options within a 0.25 standard deviation range of the desired targeted strike price.

This leads to the following specification:

P (K1) =
X

K∈[Fe−1:25V IX100
√
� ,F e−0:75V IX100

√
� ]

P (K)w(K);

P (K2) =
X

K∈[Fe−1:75V IX100
√
� ,F e−1:25V IX100

√
� ]

P (K)w(K).

(OA20)

For liquidity reasons, Lu and Murray (2019) consider only one-month options, which are options

that expire in the next month. The portfolio is held for the next five trading days, but the portfolio

is constructed daily. In addition, they subtract the five-day risk-free rate from the returns. As a

result Lu and Murray (2019) have five-day overlapping ADBear portfolio excess returns, which we

use as our jump risk measure.

JUMP Cremers et al. (2015) construct factors for volatility and jump risk with delta-neutral

at-the-money straddles. They construct delta-neutral at-the-money straddles to create portfolios

that mimic volatility or jump risk. The straddles have large vegas as well as high gammas.1 Cremers

et al. (2015) create two portfolios, one with exposure to vega and another that is only exposed to

gamma risk. These portfolios capture exclusively volatility or jump risk. To create gamma or vega

neutral straddles, Cremers et al. (2015) use the fact that the gamma of an option is decreasing with

increasing time to maturity, while vega is increasing with increasing time to maturity. They are

able to create both strategies with long/short portfolios involving market-neutral straddles with

different maturities.

1Thus, a high sensitivity towards volatility and jumps, respectively.
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They construct a zero-beta straddle:

xMN = �xc + (1− �)xp;

0 = ��c + (1− �)�p:

xMN is the return of a market-neutral straddle , xc is the return of a call, xp is the return of a put.

�c and �p are the market betas of the call and put options. To calculate the sensitivities Cremers

et al. (2015) use the Black and Scholes (1973) option pricing formula.

Cremers et al. (2015) create the following two portfolios: A jump risk factor-mimicking portfolio

(JUMP) is a market-neutral, vega-neutral, and gamma-positive strategy, where the time-to matu-

rity T2 > T1. Thus, they use (i) a long position in one market-neutral at-the-money straddle with

maturity T1 and (ii) a short position in y market-neutral at-the-money straddles with maturity T2.

y is chosen to create a vega-neutral portfolio. To construct the short-dated straddles Cremers et al.

(2015) use the option pair that is being closest at-the-money. For short-dated straddles they choose

the options that expire in the next calendar month, for long-dated options they choose options that

expire in the calendar month that follows the next month. The strategy is re-balanced daily. For

our analysis, we use the returns of the gamma-positive, vega- and market-neutral JUMP strategy.

D. Macroeconomic Measures

LE Adrian et al. (2019) develop a measure that infers tail risk for GDP growth from an index

of financial conditions. For this purpose, they use the National Financial Conditions Index (NFCI)

from Brave and Butters (2012) provided by the Chicago FED.2 They use quantile regressions to

empirically estimate the quantiles of the distribution. They use this to fit a skewed t-distribution,

to infer the entire distribution. The authors minimize the squared error between the estimation

from the quantile distribution, based on the parameters of the t-distribution and the skewed t-

distribution every quarter. They argue that financial conditions can account for a proportion of

GDP growth; especially in the left tail, tightening financial conditions leads to downside risks in

2https://www.chicagofed.org/.
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GDP growth. Adrian et al. (2019) fit the following quantile regression:

Q̂yt+� |xt(� |xt) = xt�̂τ . (OA21)

They use the estimates, to create a quantile function (the inverse cumulative distribution function)

and fit the quantile function to the skewed t-distribution to recover a probability density function:

f(y;�; �; �; v) =
2

�
t
�
y − �
�

; v
�
T

 

�
y − �
�

s
v + 1

v +
�y−µ

σ

�2 ; v + 1

!

, (OA22)

where t(•) is the probability density function (PDF) of the Student t-distribution and T (•) is

the cumulative distribution function (CDF) of the Student t-distribution. � is the location, � is

the scale, v is the fatness, and � is the shape. For each quarter, following Adrian et al. (2019),

the four parameters are chosen to minimize the distance between the estimated quantile function

Q̂yt+� |xt(� |xt) and the quantile function of the skewed t-distribution F−1(� ;�; �; �; v) at the 5, 25,

75, and 95 quantiles:

{�̂t+τ ; �̂t+τ ; �̂t+τ ; v̂t+τ} = argmin
µ,σ,α,v

X

τ

(Q̂yt+� |xt(� |xt)− F
−1(� ;�; �; �; v))2: (OA23)

We retain two measures from this estimation for each tail: the expected shortfall and the left

entropy. While the expected shortfall is the expectation of the worst outcomes of economic growth,

the left entropy describes the left-skewedness of the distribution.
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Figure A1. This figure displays the realized tail events (Dt+�t). The points illustrate the times
of the tail event realizations at the daily, weekly, and monthly horizons. For the daily frequency, in
red we display the exact dates and, in cased where the events are clearly linked to certain events,
we also indicate these events. The numbers of observed left-tail events are 24 at the daily horizon,
37 at the weekly horizon, and 46 at the monthly horizon. Weekly and monthly tail events are
clustered due to the use of overlapping return windows.
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Figure A2. This figure displays the fitted values (b · TRMt) from the probit regression: Dt+�t =
a + b · TRMt + �t+�t, executed at the daily frequency. Dt+�t is 1 if the realized market excess
return falls below the threshold defined by minus two times the current conditional volatility. The
conditional volatility is defined as the level of the VIX at the end of the previous day. TRMt is the
current observation of a tail risk measure. We indicate the actual crash realizations (Dt+�t = 1)
by vertical red lines. For BT11Q, the figure truncates values between October and December 2008.
The largest peak occurs on October 13th, 2008, reaching 0.139.

17

Electronic copy available at: https://ssrn.com/abstract=3789005



Figure A3. This figure displays the fitted values (b · TRMt) from the probit regression: Dt+�t =
a + b · TRMt + �t+�t, executed at the daily frequency. Dt+�t is 1 if the realized market excess
return falls below the threshold defined by minus two times the current conditional volatility. The
conditional volatility is defined as the level of the VIX at the end of the previous day. TRMt is the
current observation of a tail risk measure. We indicate the actual crash realizations (Dt+�t = 1)
by vertical red lines. For CJI, the figure truncates values between October and November 1997.
The largest peak occurs on October 30th, 1997, reaching 0.036.
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Figure A4. This figure displays the fitted values (b · TRMt) from the probit regression: Dt+�t =
a + b · TRMt + �t+�t, executed at the daily frequency. Dt+�t is 1 if the realized market excess
return falls below the threshold defined by minus two times the current conditional volatility. The
conditional volatility is defined as the level of the VIX at the end of the previous day. TRMt is the
current observation of a tail risk measure. We indicate the actual crash realizations (Dt+�t = 1)
by vertical red lines.
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Figure A5. This figure presents the z-statistics from predictive probit regressions for different
tail thresholds for option-implied tail risk measures. We perform the regression over different time
intervals, from daily (top left) to annually (bottom). We perform single regressions of a dummy
variable on each lagged tail risk measure. The dummy variable is 1 if the realized market excess
return falls below the threshold defined by minus x times the current conditional volatility, with x
shown on the horizontal axis (x ∈ [0:2; 2]). The conditional volatility is defined as the VIX at the
end of the previous day. The gray shaded area denotes statistical insignificance at the 5% level.
Different colors and point shapes indicate the different tail risk measures. The definitions of the
tail risk measure acronyms are given in Table I.
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Figure A6. This figure presents the z-statistics from predictive probit regressions for different
tail thresholds for return-based tail risk measures. We perform the regression over different time
intervals, from daily (top left) to annually (bottom). We perform single regressions of a dummy
variable on each lagged tail risk measure. The dummy variable is 1 if the realized market excess
return falls below the threshold defined by minus x times the current conditional volatility, with x
shown on the horizontal axis (x ∈ [0:2; 2]). The conditional volatility is defined as the VIX at the
end of the previous day. The gray shaded area denotes statistical insignificance at the 5% level.
Different colors and point shapes indicate the different tail risk measures. The definitions of the
tail risk measure acronyms are given in Table I.
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Figure A7. This figure presents the z-statistics from predictive probit regressions for different
tail thresholds for option-return-based and macroeconomic tail risk measures. We perform the
regression over different time intervals, from daily (top left) to annually (bottom). We perform
single regressions of a dummy variable on each lagged tail risk measure. The dummy variable is 1
if the realized market excess return falls below the threshold defined by minus x times the current
conditional volatility, with x shown on the horizontal axis (x ∈ [0:2; 2]). The conditional volatility
is defined as the VIX at the end of the previous day. The gray shaded area denotes statistical
insignificance at the 5% level. Different colors and point shapes indicate the different tail risk
measures. The definitions of the tail risk measure acronyms are in Table I.
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Figure A8. For the daily forecast horizon, this figure displays the coefficient estimate b from the
regression: TRMt = a+ b ·Dt+�t + �t+�t. TRMt is the current observation of a tail risk measure.
Dt+�t is 1 if the realized market excess return falls below the threshold defined by minus two times
the current conditional volatility. The conditional volatility is defined as the level of the VIX at
the end of the previous day. We indicate the point estimate with a point. The 90% confidence
interval around the point estimate is displayed by the vertical line. The confidence interval is based
on Newey and West (1987) standard errors with 29 lags.
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Figure A9. For the weekly forecast horizon, this figure displays the coefficient estimate b from the
regression: TRMt = a+ b ·Dt+�t + �t+�t. TRMt is the current observation of a tail risk measure.
Dt+�t is 1 if the realized market excess return falls below the threshold defined by minus two times
the current conditional volatility. The conditional volatility is defined as the level of the VIX at
the end of the previous day. We indicate the point estimate with a point. The 90% confidence
interval around the point estimate is displayed by the vertical line. The confidence interval is based
on Newey and West (1987) standard errors with 29 lags.
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Figure A10. For the monthly forecast horizon, this figure displays the coefficient estimate b from
the regression: TRMt = a+b·Dt+�t+�t+�t. TRMt is the current observation of a tail risk measure.
Dt+�t is 1 if the realized market excess return falls below the threshold defined by minus two times
the current conditional volatility. The conditional volatility is defined as the level of the VIX at
the end of the previous day. We indicate the point estimate with a point. The 90% confidence
interval around the point estimate is displayed by the vertical line. The confidence interval is based
on Newey and West (1987) standard errors with 29 lags.
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Table A1 Cross-Sectional Return Predictability (Equally-Weighted)

This table presents the average annualized percentage excess returns of quintile portfolios sorted on the stock loadings

on the different tail risk measures. Each month, we estimate the tail risk loadings (bi) for each stock based on a

rolling historical window:
Rit+�t = ai + bi � TRMt + �it,

Rit+�t is the excess return of stock i over the period between t and ∆t. TRM t is the current observation of a tail risk

measure. We forecast stock returns at the daily frequency and use a window length of one month for all measures

available at the daily frequency, and accordingly longer windows for measures available on lower frequencies. Based on

their current bi we then sort the stocks into quintile portfolios and obtain the equally-weighted portfolio excess return

over the next month. We repeat the entire procedure in the next month. The High� Low portfolio simultaneously

buys the stocks in the portfolio with the highest bi and sells those in the portfolio with the lowest bi. In parentheses,

we report robust Newey and West (1987) standard errors using 22 lags. ∗, ∗∗ and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

Low (2) (3) (4) High High� Low
Group A - Option-Implied Measures
BT11Q 10:97∗∗ 10:43∗∗∗ 9:76∗∗∗ 8:59∗∗ 5:46 �5:51∗∗∗

(4:548) (3:226) (3:088) (3:703) (5:341) (1:906)
BT14Q 10:97∗∗ 9:30∗∗ 9:04∗∗∗ 9:36∗∗∗ 5:45 �5:52∗∗

(5:177) (3:817) (3:406) (3:465) (4:991) (2:387)
BTX15prob 11:57∗∗ 9:91∗∗∗ 9:43∗∗∗ 8:79∗∗ 5:02 �6:56

(5:019) (3:352) (3:207) (3:813) (5:492) (4:247)
BTX15Q 6:82 8:94∗∗∗ 9:33∗∗∗ 10:14∗∗∗ 9:97∗ 3:15

(4:837) (3:226) (3:235) (3:613) (5:354) (2:774)
H MRI 13:77∗∗ 10:16∗∗ 10:64∗∗ 9:74∗∗ 10:18 �3:59

(5:989) (4:324) (4:157) (4:720) (6:201) (2:816)
RIX 12:05∗∗ 10:13∗∗∗ 8:79∗∗ 8:65∗∗ 9:36 �2:68

(4:740) (3:596) (3:493) (4:162) (6:210) (2:811)
TLM 10:64∗∗ 10:52∗∗∗ 9:03∗∗∗ 9:37∗∗ 5:66 �4:98∗∗

(4:587) (3:244) (3:295) (3:801) (5:222) (2:407)

Group B - Stock-Return-Based Measures
BT11P 9:50∗ 10:51∗∗∗ 8:71∗∗∗ 8:31∗∗ 6:79 �2:70

(5:106) (3:437) (3:299) (3:827) (5:274) (1:881)
CJI 7:82∗ 9:28∗∗∗ 9:63∗∗∗ 9:93∗∗∗ 8:56 0:74

(4:422) (3:318) (3:196) (3:617) (5:333) (1:908)
JumpRisk 11:18∗∗∗ 10:11∗∗∗ 9:60∗∗∗ 8:72∗∗ 5:59 �5:59∗∗

(4:267) (3:101) (3:364) (3:793) (5:605) (2:759)
JumpRP 10:67∗∗ 9:63∗∗∗ 9:24∗∗∗ 8:97∗∗ 6:70 �3:97∗

(4:468) (3:230) (3:231) (3:791) (5:293) (2:277)
�Hill 12:73∗∗ 10:08∗∗ 8:89∗∗ 8:69∗∗ 8:66 �4:07

(5:984) (4:021) (3:597) (3:665) (5:305) (3:460)

Group C - Option-Return-Based Measures
ADBear 10:15∗∗ 10:67∗∗∗ 9:27∗∗∗ 8:89∗∗ 6:25 �3:90∗

(4:884) (3:234) (3:219) (3:732) (5:006) (2:108)
JUMP 10:15∗∗ 10:03∗∗∗ 8:93∗∗∗ 8:82∗∗ 7:28 �2:87

(4:664) (3:225) (3:102) (3:644) (5:308) (2:117)

Group D - Macroeconomic Measures
LE 7:74 9:21∗∗ 8:85∗∗∗ 9:86∗∗∗ 9:54∗∗ 1:80

(5:247) (3:553) (3:192) (3:213) (4:595) (1:378)
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Table A2 Cross-Sectional Return Predictability (Value-Weighted FF-5 Alphas)

This table presents the annualized percentage Fama and French (2015) 5-factor alphas of quintile portfolios sorted

on the stock loadings on the different tail risk measures. Each month, we estimate the tail risk loadings (bi) for each

stock based on a rolling historical window:

Rit+�t = ai + bi � TRMt + �it,

Rit+�t is the excess return of stock i over the period between t and ∆t. TRM t is the current observation of a tail risk

measure. We forecast stock returns at the daily frequency and use a window length of one month for all measures

available at the daily frequency, and accordingly longer windows for measures available on lower frequencies. Based on

their current bi we then sort the stocks into quintile portfolios and obtain the value-weighted portfolio excess return

over the next month. We repeat the entire procedure in the next month. The High� Low portfolio simultaneously

buys the stocks in the portfolio with the highest bi and sells those in the portfolio with the lowest bi. In parentheses,

we report robust Newey and West (1987) standard errors using 22 lags. ∗, ∗∗ and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

Low (2) (3) (4) High High� Low
Group A - Option-Implied Measures
BT11Q 6:59∗∗ 3:49∗∗ 1:85 �0:32 �3:32 �9:91∗∗∗

(2:931) (1:639) (1:285) (1:365) (2:470) (2:049)
BT14Q 5:69∗ 2:02 1:21 1:76 �2:77 �8:46∗∗∗

(3:416) (1:983) (1:621) (1:475) (2:416) (3:129)
BTX15prob 6:61∗ 2:94∗ 1:57 0:31 �3:26 �9:87∗∗

(3:757) (1:685) (1:510) (1:714) (2:995) (4:875)
BTX15Q 0:86 1:65 1:21 1:81 2:76 1:90

(2:456) (1:701) (1:493) (1:513) (3:162) (3:056)
H MRI 4:94 1:89 2:44∗∗ 1:77 0:52 �4:42

(3:268) (1:299) (1:097) (1:651) (2:258) (2:759)
RIX 3:40 2:20 1:77 1:70 3:80 0:40

(2:468) (1:638) (1:644) (1:847) (3:242) (1:912)
TLM 6:17∗∗ 3:43∗∗ 0:87 0:63 �2:81 �8:97∗∗∗

(3:011) (1:700) (1:404) (1:370) (2:501) (2:428)

Group B - Stock-Return-Based Measures
BT11P 4:34 3:61∗ 1:21 0:17 �0:83 �5:18∗∗∗

(2:903) (1:887) (1:475) (1:521) (2:317) (1:991)
CJI 2:31 1:90 1:81 1:50 0:77 �1:53

(2:659) (1:524) (1:485) (1:435) (2:731) (2:390)
JumpRisk 6:06∗ 3:14∗ 1:66 0:01 �2:58 �8:64∗∗∗

(3:162) (1:784) (1:613) (1:283) (2:137) (2:572)
JumpRP 5:89∗ 2:29 1:42 0:28 �1:59 �7:48∗∗∗

(3:149) (1:682) (1:429) (1:324) (2:172) (2:300)
�Hill 6:84∗∗ 2:97∗ 1:80 0:88 0:55 �6:29∗∗

(3:462) (1:769) (1:712) (1:527) (2:943) (2:957)

Group C - Option-Return-Based Measures
ADBear 5:35∗ 3:67∗ 1:21 0:17 �2:09 �7:44∗∗∗

(2:972) (1:909) (1:401) (1:291) (2:235) (2:078)
JUMP 3:81 2:00 0:80 0:97 0:71 �3:10

(2:902) (1:522) (1:364) (1:388) (2:377) (1:926)

Group D - Macroeconomic Measures
LE 1:82 1:28 0:81 1:92 2:45 0:63

(2:533) (1:577) (1:440) (1:355) (2:531) (1:275)
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Table A3 Return Predictability: Pre−2008

This table presents the coefficients from a return predictability regression for the period from 1996 to 2007. We

perform single regressions of the market excess returns on each lagged tail risk measure:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is the current observation of a tail risk measure. We use the

following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically detrended

risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast horizons

∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually). In

parentheses, we present robust Newey and West (1987) standard errors with lag length chosen to be the maximum of

29 and the number of overlapping observations. Statistical inference is based on the wild bootstrap of Rapach et al.

(2013). The columns R2 present the Lindeman et al. (1980) partial R2 of each tail risk measure, multiplied by 100.

“PCOneAll”, “PCOneOption”, “PCOneStReturn”, and “PCOneOpReturn” denote the first PCs of all measures,

option-implied, stock-return-based, and option-return-based tail risk measures, respectively. ∗, ∗∗ and ∗∗∗ indicate

significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 18:07∗∗ 0:24 18:56∗∗ 1:27 10:19∗∗ 2:68 �0:63 0:38

(8:136) (7:838) (4:758) (2:199)
BT14Q �3:07 0:01 �1:45 0:03 �1:73 0:19 �1:92∗ 0:69

(7:754) (6:436) (3:356) (1:208)
BTX15prob 11:01 0:09 10:82∗ 0:44 9:66∗∗ 1:95 �0:59 0:43

(8:350) (7:470) (5:408) (3:645)
BTX15Q 1:83 0:03 �5:69 0:07 �6:39∗ 0:43 �3:41∗∗ 1:89

(7:282) (6:888) (3:740) (1:605)
H MRI �5:08 0:02 �1:94 0:02 0:01 0:06 5:63∗∗ 4:42

(4:913) (4:493) (3:623) (2:845)
RIX �0:89 0:02 �2:63 0:08 �8:12∗ 0:52 �6:36∗∗ 4:34

(6:144) (6:275) (4:829) (2:818)
TLM 16:21∗ 0:16 13:60∗ 0:65 2:07 0:97 �5:30∗ 2:48

(8:962) (9:443) (5:497) (3:300)

Group B - Stock-Return-Based Measures
BT11P 15:60∗∗∗ 0:28 12:93∗∗∗ 1:03 4:46∗∗∗ 0:57 0:08 0:01

(6:366) (2:417) (1:265) (0:534)
CJI 5:94 0:05 6:52∗ 0:31 2:82 0:52 �0:63 0:14

(4:676) (4:573) (3:542) (1:490)
JumpRisk �7:81 0:03 �8:78∗ 0:16 �12:32∗∗∗ 1:48 �15:63∗∗∗ 27:33

(6:282) (5:969) (5:014) (2:055)
JumpRP 16:27∗∗ 0:18 13:67∗∗ 0:72 3:92 0:89 �4:41∗ 2:47

(6:744) (5:615) (4:538) (2:579)
�Hill 3:61 0:01 6:54 0:17 7:57∗∗ 0:92 9:41∗∗∗ 21:83

(5:214) (5:115) (4:287) (1:809)

Group C - Option-Return-Based Measures
ADBear 18:45∗∗∗ 0:43 15:47∗∗∗ 1:59 4:71∗∗∗ 0:72 �0:04 0:01

(5:148) (3:943) (1:850) (0:452)
JUMP 9:83∗∗ 0:12 4:89∗∗ 0:15 2:37∗∗∗ 0:17 0:41∗∗ 0:03

(6:150) (2:508) (0:879) (0:236)

Group D - Macroeconomic Measures
LE �2:62 0:01 �2:43 0:06 �4:48 0:73 �8:55∗∗∗ 18:35

(5:192) (5:234) (4:090) (1:721)

PCOneAll 24:07∗∗∗ 0:27 19:57∗∗ 1:01 7:84 1:73 �5:47 2:49
(9:069) (9:206) (6:056) (3:558)

PCOneOption 12:92 0:12 9:23 0:40 1:08 0:92 �6:30∗ 2:89
(10:030) (10:138) (6:024) (3:506)

PCOneStReturn 15:66∗∗∗ 0:20 12:11∗∗ 0:67 2:88 0:36 �6:06∗∗∗ 8:54
(5:916) (4:921) (3:733) (1:961)

PCOneOpReturn 17:83∗∗∗ 0:40 12:85∗∗∗ 1:09 4:47∗∗∗ 0:64 0:23 0:01
(5:993) (3:718) (1:565) (0:320)

Controls Y es Y es Y es Y es
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Table A4 Multiple Return Predictability: Pre−2008

This table presents the coefficients from a return predictability regression for the period from 1996 to 2007. We

perform multiple regressions of the market excess returns on lagged tail risk measures:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is a vector of the current observations of the tail risk measures.

We use the following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically

detrended risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast

horizons ∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually).

For each forecast horizon, we first perform variable selection based on the PcGets algorithm. Space left blank implies

that a measure has not been chosen. In parentheses, we present robust Newey and West (1987) standard errors with

lag length chosen to be the maximum of 29 and the number of overlapping observations. Statistical inference is based

on the wild bootstrap of Rapach et al. (2013). The columns R2 present the Lindeman et al. (1980) partial R2 of each

tail risk measure, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 17:74∗∗ 1:44 18:01∗∗∗ 2:44 6:01∗∗∗ 4:41

(6:789) (6:427) (1:122)
BT14Q �1:53 0:13

(2:384)
BTX15prob 13:42∗∗ 1:72

(6:468)
BTX15Q �5:18∗ 0:51 �2:49∗∗ 0:62

(3:427) (1:103)
H MRI �4:44 0:32

(3:598)
RIX �0:22 0:17

(4:655)
TLM 12:33∗∗ 0:15 �12:69∗ 0:79

(5:096) (8:570)

Group B - Stock-Return-Based Measures
BT11P 1:42 0:17

(1:202)
CJI 3:43 0:32

(4:034)
JumpRisk �9:03 0:94 �5:98∗∗ 9:05

(9:147) (2:629)
JumpRP 3:86 0:48

(8:952)
�Hill 5:00 0:62 6:30∗∗∗ 16:36

(6:394) (1:691)

Group C - Option-Return-Based Measures
ADBear 11:54∗∗∗ 1:26 1:28 0:20

(4:109) (1:880)
JUMP �0:52 0:03

(0:923)

Group D - Macroeconomic Measures
LE 2:53 0:45 �3:19 9:80

(4:585) (1:792)

Controls Y es Y es Y es Y es
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Table A5 Return Predictability: Post−2008

This table presents the coefficients from a return predictability regression for the period from 2008 to 2017. We

perform single regressions of the market excess returns on each lagged tail risk measure:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is the current observation of a tail risk measure. We use the

following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically detrended

risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast horizons

∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually). In

parentheses, we present robust Newey and West (1987) standard errors with lag length chosen to be the maximum of

29 and the number of overlapping observations. Statistical inference is based on the wild bootstrap of Rapach et al.

(2013). The columns R2 present the Lindeman et al. (1980) partial R2 of each tail risk measure, multiplied by 100.

“PCOneAll”, “PCOneOption”, “PCOneStReturn”, and “PCOneOpReturn” denote the first PCs of all measures,

option-implied, stock-return-based, and option-return-based tail risk measures, respectively. ∗, ∗∗ and ∗∗∗ indicate

significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 64:68∗∗∗ 0:98 24:49∗∗ 0:64 8:83 0:39 4:96∗∗∗ 6:38

(14:971) (9:276) (6:878) (1:314)
BT14Q 15:72∗ 0:09 6:35 0:07 �5:54∗ 1:10 3:07∗∗ 3:95

(10:345) (6:456) (3:870) (1:089)
BTX15prob 26:53∗∗∗ 0:13 17:20∗∗ 0:34 15:33∗∗ 1:34 1:31 1:55

(11:021) (9:209) (7:874) (1:882)
BTX15Q 2:57 0:00 2:17 0:03 �0:41 0:14 3:13∗∗ 7:88

(11:498) (9:171) (4:422) (1:491)
H MRI �7:85 0:03 �2:57 0:05 0:63 0:10 4:65∗∗ 2:06

(5:962) (4:966) (4:494) (1:457)
RIX 8:22 0:02 13:18∗ 0:30 13:46∗∗ 1:71 0:00 5:01

(9:907) (8:315) (5:806) (1:712)
TLM 55:75∗∗∗ 0:56 29:54∗∗∗ 0:87 11:09∗ 0:57 4:08∗∗ 5:00

(18:324) (11:359) (6:902) (2:013)

Group B - Stock-Return-Based Measures
BT11P 37:03∗∗∗ 1:07 15:49∗∗∗ 1:00 3:57∗ 0:17 1:09∗∗ 0:56

(8:989) (5:357) (2:181) (0:366)
CJI �0:03 0:00 �6:90 0:27 �7:50 1:38 0:49 1:69

(10:334) (9:809) (5:857) (1:227)
JumpRisk 11:23 0:03 5:77 0:13 �3:97 0:34 �4:25 3:73

(13:992) (15:032) (13:690) (3:347)
JumpRP 26:29∗∗∗ 0:12 18:29∗∗ 0:37 9:84∗ 0:50 1:24 1:81

(8:508) (7:541) (6:172) (1:492)
�Hill �14:14∗∗ 0:03 �16:11∗∗∗ 0:24 �21:01∗∗∗ 2:51 �3:51∗∗ 1:38

(6:849) (6:142) (5:378) (1:403)

Group C - Option-Return-Based Measures
ADBear 20:27∗∗ 0:37 11:19∗∗ 0:67 2:12 0:09 0:64 0:10

(8:588) (4:838) (2:349) (0:479)
JUMP �3:56 0:01 6:58∗∗∗ 0:24 0:03 0:00 0:04 0:00

(9:473) (1:944) (1:017) (0:095)

Group D - Macroeconomic Measures
LE 7:19 0:01 4:64 0:07 13:95 0:72 2:52 2:93

(15:163) (15:484) (10:704) (2:627)

PCOneAll �62:98∗∗∗ 0:42 �32:17∗∗∗ 0:62 �13:49∗ 0:57 �4:72∗∗ 4:91
(18:664) (11:067) (8:141) (2:107)

PCOneOption 48:25∗∗ 0:36 24:29∗∗ 0:49 8:80 0:35 4:23∗ 6:04
(18:070) (10:266) (7:642) (2:089)

PCOneStReturn �42:56∗∗∗ 0:26 �20:61∗ 0:35 �9:37 0:45 �2:30 2:37
(11:598) (12:301) (8:930) (1:782)

PCOneOpReturn 10:78 0:10 11:48∗∗∗ 0:71 1:39 0:03 0:44 0:05
(9:165) (3:575) (1:909) (0:375)

Controls Y es Y es Y es Y es
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Table A6 Multiple Return Predictability: Post−2008

This table presents the coefficients from a return predictability regression for the period from 2008 to 2017. We

perform multiple regressions of the market excess returns on lagged tail risk measures:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is a vector of the current observations of the tail risk measures.

We use the following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically

detrended risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast

horizons ∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually).

For each forecast horizon, we first perform variable selection based on the PcGets algorithm. Space left blank implies

that a measure has not been chosen. In parentheses, we present robust Newey and West (1987) standard errors with

lag length chosen to be the maximum of 29 and the number of overlapping observations. Statistical inference is based

on the wild bootstrap of Rapach et al. (2013). The columns R2 present the Lindeman et al. (1980) partial R2 of each

tail risk measure, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 53:43∗ 0:59 3:43∗∗ 3:79

(26:057) (1:322)
BT14Q 0:83 2:00

(0:705)
BTX15prob

BTX15Q �83:25∗∗∗ 0:68 �36:89∗∗∗ 0:70
(22:970) (12:843)

H MRI 4:39∗∗∗ 2:90
(1:092)

RIX

TLM 79:31∗ 0:43 46:30∗∗∗ 0:95
(40:381) (14:624)

Group B - Stock-Return-Based Measures
BT11P 22:67∗∗ 0:68 0:38 0:26

(8:962) (0:283)
CJI

JumpRisk

JumpRP

�Hill

Group C - Option-Return-Based Measures
ADBear

JUMP 6:22∗∗∗ 0:23
(1:956)

Group D - Macroeconomic Measures
LE

Controls Y es Y es Y es Y es
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Table A7 Multiple Prediction of Tail Events: Jackknife Procedure

This table presents the coefficients from the predictive probit regressions. We perform multiple probit regressions of

a dummy variable on lagged tail risk measures:

Dt+�t = a+ b � TRMt + �t+�t.

Dt+�t is 1 if the realized market excess return falls below the threshold defined by minus two times the current

conditional volatility. The conditional volatility is defined as the level of the VIX at the previous day. TRMt is a

vector of the current observations of the tail risk measures. We use four different forecast horizons ∆t: (i) one-day

(Daily), (ii) one-week (Weekly), and (iii) one-month (Monthly). For each forecast horizon, we first perform variable

selection based on a jackknife procedure. Space left blank implies that a measure has not been chosen. In parentheses,

we present robust Newey and West (1987) standard errors with 29 lags. Statistical inference is based on the wild

bootstrap of Rapach et al. (2013). The columns R2 present the partial McFadden R2s, obtained by dominance

analysis, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q

BT14Q 0:13∗∗ 1:87 0:12 0:73
(0:050) (0:075)

BTX15prob �0:23 0:74 �0:13 0:39 �0:71∗∗ 3:47
(0:147) (0:129) (0:279)

BTX15Q

H MRI �0:10 0:70 �0:11 0:37
(0:134) (0:070)

RIX �0:16 0:98 �0:08 0:62 �0:37∗∗ 2:57
(0:151) (0:139) (0:154)

TLM

Group B - Stock-Return-Based Measures
BT11P 0:09∗∗ 0:82

(0:044)
CJI 0:08 0:49

(0:092)
JumpRisk 0:51∗∗ 5:88

(0:205)
JumpRP 0:15 1:42 0:44∗ 2:54

(0:151) (0:254)
�Hill 0:21∗∗∗ 0:96

(0:063)

Group C - Option-Return-Based Measures
ADBear 0:03 1:02 0:06 0:56

(0:084) (0:067)
JUMP 0:10∗∗ 3:45 �0:13∗∗∗ 1:26 0:00 0:22

(0:042) (0:041) (0:033)

Group D - Macroeconomic Measures
LE 0:08 0:43 �0:04 0:09

(0:101) (0:109)
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Table A8 Multiple Predictability of Left Tail Variation: Jackknife Procedure

This table presents the coefficients from a predictive regression for future left tail variation. We perform multiple

regressions of the realized left tail variation on the lagged tail risk measures:

LTV P
t+�t = a+ b � TRMt + c � LTV P

t + d � V IXt + �t+�t.

TRMt is a vector of the current observations of the tail risk measures. We control for the lagged left tail variation

LTV P
t and the current level of the VIX (V IXt). We use three different forecast horizons ∆t: (i) one-day (Daily), (ii)

one-week (Weekly), and (iii) one-month (Monthly). For each forecast horizon, we first perform variable selection

based on a jackknife procedure. Space left blank implies that a measure has not been chosen. In parentheses,

we present robust Newey and West (1987) standard errors with 29 lags. Statistical inference is based on the wild

bootstrap of Rapach et al. (2013). The columns R2 present the Lindeman et al. (1980) partial R2 of each tail risk

measure, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:13∗∗ 1:78 0:20∗∗ 5:16 0:15∗∗ 6:89

(0:051) (0:073) (0:064)
BT14Q 0:06∗∗∗ 1:28 0:16∗∗ 4:17 0:10∗∗ 4:07

(0:028) (0:086) (0:054)
BTX15prob �0:11∗ 0:48 �0:07 0:91 �0:10∗ 1:34

(0:069) (0:058) (0:069)
BTX15Q 0:06 2:47

(0:067)
H MRI

RIX �0:08∗∗ 0:30 �0:12∗∗ 0:70 �0:12∗∗ 0:81
(0:038) (0:059) (0:054)

TLM 0:14∗ 1:36
(0:090)

Group B - Stock-Return-Based Measures
BT11P �0:05 0:13 0:04∗∗ 0:83 0:06∗∗ 1:34

(0:034) (0:024) (0:028)
CJI 0:03 0:36 0:07 1:21 0:08∗ 1:82

(0:029) (0:051) (0:055)
JumpRisk 0:05∗∗∗ 0:36 0:09∗∗∗ 1:30 0:11∗∗ 2:65

(0:021) (0:040) (0:053)
JumpRP

�Hill

Group C - Option-Return-Based Measures
ADBear

JUMP �0:01 0:01
(0:010)

Group D - Macroeconomic Measures
LE 0:03 0:41 0:07∗∗ 1:58 0:16∗∗∗ 4:41

(0:024) (0:038) (0:057)

Controls Y es Y es Y es
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Table A9 Multiple Return Predictability: Jackknife Procedure

This table presents the coefficients from a return predictability regression. We perform multiple regressions of the

market excess returns on lagged tail risk measures:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is a vector of the current observations of the tail risk measures.

We use the following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically

detrended risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast

horizons ∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually).

For each forecast horizon, we first perform variable selection based on a jackknife procedure. Space left blank implies

that a measure has not been chosen. In parentheses, we present robust Newey and West (1987) standard errors with

lag length chosen to be the maximum of 29 and the number of overlapping observations. Statistical inference is based

on the wild bootstrap of Rapach et al. (2013). The columns R2 present the Lindeman et al. (1980) partial R2 of each

tail risk measure, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 36:50∗∗∗ 0:25 4:83∗∗ 4:14

(9:343) (1:631)
BT14Q �9:15 0:04 �3:03 0:36

(7:750) (2:532)
BTX15prob 13:49∗∗∗ 1:89

(4:676)
BTX15Q �21:46∗∗∗ 0:10 �8:60∗ 0:14 �4:06∗ 0:20 0:40 2:98

(7:587) (5:801) (2:475) (2:096)
H MRI

RIX 5:35 0:22 1:04 0:75
(5:495) (3:808)

TLM

Group B - Stock-Return-Based Measures
BT11P 10:81 0:14 5:82∗ 0:22

(9:500) (3:292)
CJI

JumpRisk �2:13 0:19 �6:13∗∗ 2:92
(4:402) (3:024)

JumpRP

�Hill 2:21∗ 7:70
(1:519)

Group C - Option-Return-Based Measures
ADBear 6:68 0:09 6:63∗∗ 0:29

(6:313) (3:101)
JUMP �13:78∗∗ 0:14 2:68 0:10 1:53∗∗∗ 0:05

(6:561) (3:067) (0:639)

Group D - Macroeconomic Measures
LE

Controls Y es Y es Y es Y es
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Table A11 Prediction of Tail Events (Number of Jumps)

This table presents the coefficients from a predictive regression for the number of future negative jumps. We perform

single regressions of the realized number of negative jumps (NLJ) on each lagged tail risk measure:

NLJt+�t = a+ b � TRMt + c �NLJt + d � V IXt + �t+�t.

TRMt is the current observation of a tail risk measure. We control for the lagged number of negative jumps NLJt and

the current level of the VIX (V IXt). We use three different forecast horizons ∆t: (i) one-day (Daily), (ii) one-week

(Weekly), and (iii) one-month (Monthly). In parentheses, we present robust Newey and West (1987) standard errors

with 29 lags. Statistical inference is based on the wild bootstrap of Rapach et al. (2013). The columns R2 present

the Lindeman et al. (1980) partial R2 of each tail risk measure, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance

at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:16∗∗∗ 1:39 0:78∗∗∗ 3:63 1:69∗∗∗ 5:41

(0:040) (0:173) (0:700)
BT14Q 0:07∗∗∗ 0:56 0:27∗∗∗ 1:51 0:08 2:69

(0:025) (0:106) (0:294)
BTX15prob �0:01 1:48 �0:12 4:34 0:08 7:05

(0:040) (0:169) (0:618)
BTX15Q 0:05∗∗ 0:76 0:27∗∗ 1:88 0:14 3:28

(0:029) (0:115) (0:405)
H MRI 0:00 0:48 0:00 1:35 0:02 2:27

(0:023) (0:091) (0:349)
RIX �0:03 0:60 �0:12 1:66 �0:13 2:54

(0:030) (0:121) (0:487)
TLM �0:04 2:04 �0:06 5:38 �1:20 8:50

(0:078) (0:320) (1:253)

Group A - Option-Implied Measures
BT11P �0:10∗∗∗ 1:16 �0:28∗∗∗ 1:92 �0:57∗∗∗ 1:58

(0:018) (0:053) (0:126)
CJI 0:04∗∗ 0:25 0:20∗∗ 0:60 0:38 0:93

(0:025) (0:096) (0:378)
JumpRisk �0:11∗∗∗ 1:52 �0:38∗∗∗ 3:71 �0:96∗∗ 5:56

(0:027) (0:110) (0:484)
JumpRP �0:23∗∗∗ 3:14 �0:72∗∗∗ 7:20 �1:81∗∗∗ 9:91

(0:043) (0:198) (0:677)
�Hill 0:03 0:46 0:10 1:20 0:39 2:39

(0:031) (0:128) (0:482)

Group A - Option-Implied Measures
ADBear �0:10∗∗∗ 1:09 �0:42∗∗∗ 2:37 �1:10∗∗∗ 1:72

(0:017) (0:062) (0:186)
JUMP �0:04∗∗∗ 0:20 �0:15∗∗∗ 0:30 �0:16∗ 0:07

(0:016) (0:044) (0:095)

Group A - Option-Implied Measures
LE 0:02 0:47 0:09 1:25 0:59∗ 1:95

(0:024) (0:095) (0:382)

PCOneAll �0:19∗∗ 2:34 �0:50∗ 5:94 �1:61 9:12
(0:091) (0:355) (1:296)

PCOneOption 0:14∗∗ 1:70 0:61∗∗ 4:52 0:55 7:32
(0:071) (0:285) (1:060)

PCOneStReturn �0:26∗∗∗ 3:50 �0:83∗∗∗ 7:88 �2:24∗∗∗ 10:97
(0:040) (0:154) (0:519)

PCOneOpReturn �0:09∗∗∗ 0:90 �0:36∗∗∗ 1:82 �0:80∗∗∗ 1:01
(0:017) (0:054) (0:166)

Controls Y es Y es Y es
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Table A12 Predictability of Left Tail Variation (Including Overnight Returns)

This table presents the coefficients from a predictive regression for future left tail variation, including the overnight

variation. We perform single regressions of the standardized realized left tail variation on each lagged tail risk measure:

LTV P
t+�t = a+ b � TRMt + c � LTV P

t + d � V IXt + �t+�t.
TRMt is the current observation of a tail risk measure. We control for the lagged left tail variation LTV P

t and the

current level of the VIX (V IXt). We use three different forecast horizons ∆t: (i) one-day (Daily), (ii) one-week

(Weekly), and (iii) one-month (Monthly). In parentheses, we present robust Newey and West (1987) standard errors

with 29 lags. Statistical inference is based on the wild bootstrap of Rapach et al. (2013). The columns R2 present

the Lindeman et al. (1980) partial R2 of each tail risk measure, multiplied by 100. “PCOneAll”, “PCOneOption”,

“PCOneStReturn”, and “PCOneOpReturn” denote the first PCs of all measures, option-implied, stock-return-

based, and option-return-based tail risk measures, respectively. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%,

and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:44∗∗∗ 9:62 0:41∗∗∗ 17:31 0:26∗ 15:18

(0:120) (0:098) (0:152)
BT14Q 0:13∗∗ 4:86 0:13∗∗ 9:67 0:04 7:34

(0:071) (0:060) (0:036)
BTX15prob �0:19∗∗ 2:80 �0:20∗ 5:43 �0:24∗∗ 5:62

(0:099) (0:099) (0:138)
BTX15Q 0:12∗∗ 4:78 0:11∗∗ 9:36 0:03 7:74

(0:053) (0:054) (0:056)
H MRI 0:07∗∗ 0:83 0:06∗∗∗ 1:64 0:01 1:79

(0:033) (0:025) (0:022)
RIX �0:01 0:81 �0:02 1:69 �0:08 1:94

(0:037) (0:041) (0:069)
TLM 0:04 5:56 �0:05 11:15 �0:14 10:62

(0:089) (0:123) (0:219)

Group B - Stock-Return-Based Measures
BT11P 0:02 1:01 0:06∗∗ 2:85 0:08∗∗ 2:89

(0:042) (0:029) (0:043)
CJI 0:05 1:79 0:03 3:29 0:04 3:31

(0:053) (0:054) (0:075)
JumpRisk 0:07∗∗∗ 1:97 0:08∗∗∗ 4:24 0:11∗∗∗ 5:78

(0:017) (0:025) (0:034)
JumpRP �0:15∗∗ 3:36 �0:17∗∗ 6:71 �0:01 6:72

(0:084) (0:072) (0:081)
�Hill 0:03 0:45 0:02 0:97 0:02 1:08

(0:024) (0:021) (0:027)

Group C - Option-Return-Based Measures
ADBear 0:01 0:47 �0:01 0:93 0:08∗∗∗ 1:45

(0:017) (0:019) (0:040)
JUMP 0:00 0:04 0:01∗ 0:15 0:02 0:10

(0:017) (0:009) (0:017)

Group D - Macroeconomic Measures
LE 0:07∗∗ 2:76 0:10∗∗ 6:25 0:12∗∗ 7:58

(0:034) (0:040) (0:057)

PCOneAll 0:35∗∗∗ 6:67 0:36∗∗∗ 13:53 0:26∗∗ 12:91
(0:112) (0:106) (0:145)

PCOneOption 0:24∗∗∗ 6:49 0:19∗∗ 12:74 �0:10 11:32
(0:111) (0:100) (0:205)

PCOneStReturn 0:00 4:07 0:04 8:76 0:15∗ 9:64
(0:051) (0:048) (0:106)

PCOneOpReturn 0:01 0:32 0:00 0:73 0:06∗∗∗ 0:94
(0:020) (0:015) (0:026)

Controls Y es Y es Y es
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Table A13 Predictability of Left Tail Variation: Block Bootstrap

This table presents the coefficients from a predictive regression for future left tail variation. We perform single

regressions of the standardized realized left tail variation on each lagged tail risk measure:

LTV P
t+�t = a+ b � TRMt + c � LTV P

t + d � V IXt + �t+�t.

TRMt is the current observation of a tail risk measure. We control for the lagged left tail variation LTV P
t and the

current level of the VIX (V IXt). We use three different forecast horizons ∆t: (i) one-day (Daily), (ii) one-week

(Weekly), and (iii) one-month (Monthly). In parentheses, we present robust Newey and West (1987) standard errors

with 29 lags. Statistical inference is based on the block bootstrap of Lahiri (1999). The columns R2 present the

Lindeman et al. (1980) partial R2 of each tail risk measure, multiplied by 100. “PCOneAll”, “PCOneOption”,

“PCOneStReturn”, and “PCOneOpReturn” denote the first PCs of all measures, option-implied, stock-return-

based, and option-return-based tail risk measures, respectively. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%,

and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:19∗∗ 2:88 0:30∗∗ 8:52 0:14 9:27

(0:098) (0:173) (0:140)
BT14Q 0:10∗ 2:18 0:18∗ 6:67 0:09 6:05

(0:070) (0:133) (0:083)
BTX15prob �0:12∗∗ 0:96 �0:23∗ 2:99 �0:23∗ 3:40

(0:057) (0:152) (0:183)
BTX15Q 0:09∗ 1:95 0:13 5:42 0:02 4:77

(0:053) (0:111) (0:093)
H MRI 0:03∗∗ 0:31 0:05∗ 0:97 �0:01 1:35

(0:020) (0:050) (0:041)
RIX �0:03 0:19 �0:06 0:60 �0:06 0:86

(0:028) (0:062) (0:081)
TLM 0:05 1:99 0:14 6:39 �0:07 6:73

(0:088) (0:219) (0:271)

Group B - Stock-Return-Based Measures
BT11P �0:01 0:23 0:04∗ 1:30 0:06∗∗ 1:91

(0:046) (0:029) (0:034)
CJI 0:02 0:62 0:04 1:84 0:03 2:30

(0:030) (0:053) (0:055)
JumpRisk 0:03∗∗ 0:63 0:06∗∗ 1:95 0:09∗∗ 3:50

(0:014) (0:030) (0:076)
JumpRP �0:09∗ 1:18 �0:15 3:64 �0:03 4:18

(0:053) (0:164) (0:134)
�Hill 0:01 0:21 0:01 0:68 0:00 1:03

(0:018) (0:037) (0:050)

Group C - Option-Return-Based Measures
ADBear 0:01 0:22 0:02 0:64 0:06∗∗ 1:02

(0:026) (0:038) (0:049)
JUMP 0:04∗∗ 0:24 0:02∗ 0:10 0:03∗∗∗ 0:16

(0:031) (0:014) (0:021)

Group D - Macroeconomic Measures
LE 0:03∗ 0:89 0:06∗∗ 2:81 0:14∗∗∗ 5:83

(0:024) (0:041) (0:063)

PCOneAll 0:20∗∗ 2:30 0:32∗∗ 7:12 0:29∗∗ 8:47
(0:099) (0:145) (0:191)

PCOneOption 0:14 2:27 0:19 6:78 �0:05 7:08
(0:114) (0:223) (0:301)

PCOneStReturn �0:02 1:37 0:02 4:66 0:13 6:47
(0:064) (0:111) (0:119)

PCOneOpReturn 0:04∗ 0:35 0:02 0:51 0:06∗∗ 0:81
(0:031) (0:032) (0:040)

Controls Y es Y es Y es
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Table A14 Multiple Predictability of Left Tail Variation: Block Bootstrap

This table presents the coefficients from a predictive regression for future left tail variation. We perform multiple

regressions of the realized left tail variation on the lagged tail risk measures:

LTV P
t+�t = a+ b � TRMt + c � LTV P

t + d � V IXt + �t+�t.

TRMt is a vector of the current observations of the tail risk measures. We control for the lagged left tail variation

LTV P
t and the current level of the VIX (V IXt). We use three different forecast horizons ∆t: (i) one-day (Daily), (ii)

one-week (Weekly), and (iii) one-month (Monthly). For each forecast horizon, we first perform variable selection

based on the PcGets algorithm. Space left blank implies that a measure has not been chosen. In parentheses, we

present robust Newey and West (1987) standard errors with 29 lags. Statistical inference is based on the block

bootstrap of Lahiri (1999). The columns R2 present the Lindeman et al. (1980) partial R2 of each tail risk measure,

multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2

Group A - Option-Implied Measures
BT11Q 0:19∗∗∗ 4:15 �0:02∗∗∗ 10:27

(0:046) (0:008)
BT14Q

BTX15prob

BTX15Q

H MRI

RIX

TLM

Group B - Stock-Return-Based Measures
BT11P

CJI

JumpRisk 0:04∗∗∗ 0:65
(0:015)

JumpRP

�Hill

Group C - Option-Return-Based Measures
ADBear

JUMP

Group D - Macroeconomic Measures
LE 0:04∗∗∗ 3:12 0:01∗∗∗ 4:76

(0:010) (0:004)

Controls Y es Y es Y es

39

Electronic copy available at: https://ssrn.com/abstract=3789005



Table A15 Return Predictability: Block Bootstrap

This table presents the coefficients from a return predictability regression. We perform single regressions of the

market excess returns on each lagged tail risk measure:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is the current observation of a tail risk measure. We use the

following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically detrended

risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast horizons

∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually). In

parentheses, we present robust Newey and West (1987) standard errors with lag length chosen to be the maximum

of 29 and the number of overlapping observations. Statistical inference is based on the block bootstrap of Lahiri

(1999). The columns R2 present the Lindeman et al. (1980) partial R2 of each tail risk measure, multiplied by 100.

“PCOneAll”, “PCOneOption”, “PCOneStReturn”, and “PCOneOpReturn” denote the first PCs of all measures,

option-implied, stock-return-based, and option-return-based tail risk measures, respectively. ∗, ∗∗ and ∗∗∗ indicate

significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 35:96∗∗∗ 0:52 15:21∗∗ 0:51 6:64∗ 0:48 2:85 2:17

(7:350) (5:613) (4:504) (1:915)
BT14Q 5:15 0:02 0:70 0:02 �4:18 0:34 0:71 0:56

(6:213) (4:386) (2:742) (1:713)
BTX15prob 11:67∗∗ 0:07 7:40 0:24 8:41∗ 1:18 �2:13 0:49

(6:121) (5:518) (4:242) (3:193)
BTX15Q 1:50 0:01 �3:19 0:03 �3:37 0:14 1:14 1:61

(5:816) (5:227) (3:141) (2:337)
H MRI �7:23∗∗ 0:02 �2:98 0:04 �0:65 0:09 3:10 1:01

(4:028) (3:313) (2:917) (2:620)
RIX 2:48 0:02 3:16 0:13 3:35 0:61 0:25 1:32

(5:927) (5:402) (4:528) (3:315)
TLM 26:51∗∗∗ 0:26 13:48∗∗ 0:50 4:11 0:50 �0:73 0:77

(8:577) (6:277) (4:563) (2:825)

Group B - Stock-Return-Based Measures
BT11P 25:95∗∗∗ 0:63 13:89∗∗∗ 0:96 3:91∗∗∗ 0:29 0:58 0:10

(5:859) (2:855) (1:383) (0:394)
CJI 3:75 0:01 1:49 0:03 �0:03 0:05 1:22 0:70

(4:335) (4:330) (2:941) (1:285)
JumpRisk �5:67 0:01 �7:73∗ 0:05 �10:91∗∗ 0:55 �15:36∗∗∗ 12:30

(5:754) (5:798) (5:197) (2:654)
JumpRP 15:94∗∗∗ 0:11 11:29∗∗∗ 0:38 4:72 0:52 �2:14 0:46

(5:360) (4:721) (3:997) (2:319)
�Hill �0:42 0:00 1:36 0:05 0:04 0:08 6:25∗∗∗ 9:38

(4:057) (4:015) (3:469) (1:610)

Group C - Option-Return-Based Measures
ADBear 19:16∗∗∗ 0:39 13:31∗∗∗ 1:07 3:30∗∗ 0:30 �0:10 0:01

(4:820) (3:073) (1:565) (0:381)
JUMP 2:83 0:01 5:80∗∗∗ 0:20 1:14∗ 0:03 0:20 0:01

(6:084) (1:585) (0:703) (0:141)

Group D - Macroeconomic Measures
LE 2:20 0:01 0:45 0:03 3:14 0:09 �2:27 0:49

(7:517) (7:774) (5:657) (2:816)

PCOneAll 34:45∗∗∗ 0:29 18:66∗∗∗ 0:54 8:19 0:68 1:18 1:38
(8:736) (6:265) (4:955) (2:975)

PCOneOption 22:46∗∗ 0:18 9:16 0:26 2:74 0:33 0:52 1:21
(8:518) (6:161) (4:788) (3:112)

PCOneStReturn 24:42∗∗∗ 0:25 14:23∗∗∗ 0:49 5:39∗ 0:41 �2:27 0:79
(5:310) (4:605) (3:644) (1:983)

PCOneOpReturn 14:06∗∗∗ 0:21 12:22∗∗∗ 0:89 2:84∗∗ 0:22 0:06 0:00
(5:477) (2:523) (1:294) (0:271)

Controls Y es Y es Y es Y es
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Table A16 Multiple Return Predictability: Block Bootstrap

This table presents the coefficients from a return predictability regression. We perform multiple regressions of the

market excess returns on lagged tail risk measures:

Rt+�t = a+ b � TRMt + c � Controlst + �t+�t.

Rt+�t is the excess return over the period ∆t. TRMt is a vector of the current observations of the tail risk measures.

We use the following control variables (in Controlst): variance risk premium, log dividend-price ratio, stochastically

detrended risk free rate, consumption–wealth ratio, default spread, and term spread. We use four different forecast

horizons ∆t: (i) one-day (Daily), (ii) one-week (Weekly), (iii) one-month (Monthly), and (iv) one-year (Annually).

For each forecast horizon, we first perform variable selection based on the PcGets selection algorithm. Space left blank

implies that a measure has not been chosen. In parentheses, we present robust Newey and West (1987) standard errors

with lag length chosen to be the maximum of 29 and the number of overlapping observations. Statistical inference is

based on the block bootstrap of Lahiri (1999). The columns R2 present the Lindeman et al. (1980) partial R2 of each

tail risk measure, multiplied by 100. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Daily R2 Weekly R2 Monthly R2 Annually R2

Group A - Option-Implied Measures
BT11Q 47:61∗∗∗ 0:53 10:47∗ 0:57 6:35∗∗∗ 6:42

(10:620) (5:865) (0:831)
BT14Q �6:45∗∗∗ 0:63

(2:499)
BTX15prob 8:32∗ 1:31

(4:793)
BTX15Q �21:81∗∗∗ 0:12 �21:65∗∗∗ 0:44 �8:22∗∗∗ 0:36

(8:673) (6:785) (3:136)
H MRI

RIX

TLM 22:23∗∗∗ 0:53
(7:645)

Group B - Stock-Return-Based Measures
BT11P 17:39∗∗∗ 0:46 7:35∗∗∗ 0:51

(5:906) (2:697)
CJI

JumpRisk �13:26∗∗∗ 7:93
(3:057)

JumpRP

�Hill

Group C - Option-Return-Based Measures
ADBear 8:78∗∗∗ 0:70

(3:063)
JUMP

Group D - Macroeconomic Measures
LE

Controls Y es Y es Y es Y es
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